OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho ba điểm \(A,\,\,B,\,\,C\) lần lượt biểu diễn ba số phức \({z_1} = 1 + i\), \({z_2} = {\left( {1 + i} \right)^2}\) và \({z_3} = a - i\). Để tam giác ABC vuông tại B thì a bằng:

A. \( - 3\)                               B. \( - 2\)

C. \(3\)                                   D. \( - 4\)

  bởi Nguyễn Quang Thanh Tú 08/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Vì A, B, C lần lượt là các điểm biểu diễn ba số phức \({z_1} = 1 + i\), \({z_2} = {\left( {1 + i} \right)^2} = 2i\) và \({z_3} = a - i\) nên ta có A(1;1), B(0;2) và C(a;-1).

    Ta có: \(\overrightarrow {BA}  = \left( {1; - 1} \right),\,\,\overrightarrow {BC}  = \left( {a; - 3} \right)\).

    Tam giác ABC vuông tại B thì \(\overrightarrow {BA} .\overrightarrow {BC}  = 0\).

    \( \Leftrightarrow 1.a - 1.\left( { - 3} \right) = 0\)\( \Leftrightarrow a + 3 = 0 \Leftrightarrow a =  - 3\)

    Chọn A.

      bởi Nguyễn Trọng Nhân 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF