OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho \(a,\,\,b,\,\,c\) là ba số thực dương, \(a > 1\) và thỏa mãn \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}} = 0\). Tìm số bộ \(\left( {a;b;c} \right)\) thỏa mãn điều kiện đã cho

  bởi Nguyễn Thanh Trà 06/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(\log _a^2\left( {bc} \right) + {\log _a}{\left( {{b^3}{c^3} + \dfrac{{bc}}{4}} \right)^2} + 4 + \sqrt {4 - {c^2}} \,\,\left( {a > 1,\,\,\,b,c > 0} \right)\)

    \(\begin{array}{l} = \log _a^2\left( {bc} \right) + 2{\log _a}\left( {bc.\left( {{b^2}{c^2} + \dfrac{1}{4}} \right)} \right) + 4 + \sqrt {4 - {c^2}}  \ge \,\log _a^2\left( {bc} \right) + 2{\log _a}\left( {bc.bc} \right) + 4 + \sqrt {4 - {c^2}} \\ = \log _a^2\left( {bc} \right) + 4{\log _a}\left( {bc} \right) + 4 + \sqrt {4 - {c^2}}  = {\left( {{{\log }_a}\left( {bc} \right) + 2} \right)^2} + \sqrt {4 - {c^2}}  \ge 0\end{array}\)

    Dấu “=” xảy ra khi và chỉ khi \(\left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}\left( {bc} \right) + 2 = 0\\4 - {c^2} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}\dfrac{1}{2} + 2 = 0\\{c^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}bc = \dfrac{1}{2}\\{\log _a}2 = 2\\{c^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \sqrt 2 \\b = \dfrac{1}{4}\\c = 2\end{array} \right.\)

    Vậy số bộ \(\left( {a;b;c} \right)\)  thỏa mãn điều kiện đã cho là 1.

      bởi Anh Hà 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF