OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho \(a, b, c \in \mathbb R\), \(a \ne 0\), \(z_1\) và \(z_2\) là hai nghiệm của phương trình \(a{z^2} + {\rm{ }}bz{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\) Hãy tính \({z_1} + {z_2}\) và \({z_1} {z_2}\) theo các hệ số \(a, b, c\).

Cho \(a, b, c \in \mathbb R\), \(a \ne 0\), \(z_1\) và \(z_2\) là hai nghiệm của phương trình \(a{z^2} + {\rm{ }}bz{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\)  Hãy tính \({z_1} + {z_2}\) và \({z_1} {z_2}\) theo các hệ số \(a, b, c\).  

  bởi Phạm Khánh Linh 05/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Yêu cầu của bài toán này là kiểm chứng định lí Vi-ét đối với phương trình bậc hai trên tập số phức.

    +) Trường hợp \(∆ ≥ 0\), theo định lí vi-ét ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{b}{a}\\{z_1}{z_2} = \dfrac{c}{a}\end{array} \right.\)

    +) Trường hợp \(∆ < 0\),  gọi \(\delta\) là một căn bậc hai của \(\Delta\), khi đó các nghiệm của phương trình là: 

    \(\begin{array}{l}{z_1} = \dfrac{{ - b + \delta }}{{2a}};\,\,{z_2} = \dfrac{{ - b - \delta }}{{2a}}\\\Rightarrow {z_1} + {z_2} = \dfrac{{ - b + \delta - b - \delta }}{{2a}} = \dfrac{{ - b}}{a}\\{z_1}{z_2} = \dfrac{{\left( { - b + \delta } \right)\left( { - b - \delta } \right)}}{{4{a^2}}} = \dfrac{{{b^2} - {\delta ^2}}}{{4{a^2}}}\\= \dfrac{{{b^2} - \left( {{b^2} - 4ac} \right)}}{{4{a^2}}} = \dfrac{{4ac}}{{4{a^2}}} = \dfrac{c}{a}\end{array}\)

    Vậy kết quả của định lí Vi-et vẫn đúng trong trường hợp \(∆ < 0\).

      bởi Pham Thi 06/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF