OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Biết rằng phương trình \(\sqrt {2 - x} + \sqrt {2 + x} - \sqrt {4 - {x^2}} = m\) có nghiệm khi \(m \in \left[ {a;b} \right]\) với \(a,b \in \mathbb{R}\). Khi đó giá trị của \(T = (a + 2)\sqrt 2 + b\) là bằng câu?

A. \(T = 3\sqrt 2  + 2\)  B. \(T = 6\).       C. \(T = 8\).      D. \(T = 0\).

  bởi Nguyễn Hiền 11/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Xét hàm số \(y = \sqrt {2 - x}  + \sqrt {2 + x}  - \sqrt {4 - {x^2}} \) trên \(\left[ { - 2;2} \right]\), ta có:

    \(y' =  - \dfrac{1}{{\sqrt {2 - x} }} + \dfrac{1}{{\sqrt {2 + x} }} - \dfrac{x}{{\sqrt {4 - {x^2}} }} = \dfrac{{\sqrt {2 - x}  - \sqrt {2 + x}  - x}}{{\sqrt {4 - {x^2}} }}\)

    \(y' = 0 \Leftrightarrow \dfrac{{\sqrt {2 - x}  - \sqrt {2 + x}  - x}}{{\sqrt {4 - {x^2}} }} = 0 \Leftrightarrow \sqrt {2 - x}  - \sqrt {2 + x}  - x = 0,(x \ne  \pm 2) \Leftrightarrow \sqrt {2 - x}  - \sqrt {2 + x}  = x(1)\)

     

    Nếu \(x < 0\) thì \(\sqrt {2 - x}  > \sqrt {2 + x}  \Rightarrow \sqrt {2 - x}  - \sqrt {2 + x}  > 0 \Rightarrow (1)\)vô nghiệm.

    Nếu \(x > 0\) thì \(\sqrt {2 - x}  < \sqrt {2 + x}  \Rightarrow \sqrt {2 - x}  - \sqrt {2 + x}  < 0 \Rightarrow (1)\)vô nghiệm.

    Thay \(x = 0\) vào (1), ta thấy \(x = 0\) là nghiệm và đồng thời là nghiệm duy nhất của (1)

    Để phương trình \(\sqrt {2 - x}  + \sqrt {2 + x}  - \sqrt {4 - {x^2}}  = m\) có nghiệm thì \(m \in \left[ {2\sqrt 2 {\rm{\;}} - 2;2} \right]\).

    \( \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 2\sqrt 2 {\rm{\;}} - 2}\\{b = 2}\end{array}} \right. \Rightarrow T = (a + 2)\sqrt 2 {\rm{\;}} + b = (2\sqrt 2 {\rm{\;}} - 2 + 2).\sqrt 2 {\rm{\;}} + 2 = 6\)

    Chọn B.

      bởi Trần Phương Khanh 11/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF