OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Biết rằng \(F\left( x \right) = - \frac{{\left( {x - a} \right){\rm{cos3}}x}}{b} + \frac{1}{c}\sin 3x + 2019\) là một nguyên hàm của hàm số \(f\left( x \right) = \left( {x - 2} \right)\sin 3x,\)\(a,\,\,b,\,\,c \in \mathbb{Z}\) . Giá trị của \(ab + c\) bằng

A. 18.                             B. 14.

C. 15.                             D. 10.

  bởi Duy Quang 09/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có \(F\left( x \right) = \int {f\left( x \right)}  = \int {\left( {x - 2} \right)\sin 3x} \). 

    Đặt \(\left\{ \begin{array}{l}u = x - 2\\dv = \sin 3xdx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \frac{1}{3}\cos 3x\end{array} \right.\)

    \(\begin{array}{l} \Rightarrow F\left( x \right) = \int {f\left( x \right)dx} \\ =  - \frac{1}{3}\left( {x - 2} \right)\cos 3x + \frac{1}{3}\int {\cos 3xdx} \\ =  - \frac{{\left( {x - 2} \right)\cos 3x}}{3} + \frac{1}{9}\sin 3x + C\end{array}\)

    Mà \(F\left( x \right) =  - \frac{{\left( {x - a} \right)\cos 3x}}{b} + \frac{1}{c}\sin 3x + 2019\)

    Nên \(a = 2;\,\,b = 3;\,\,c = 9.\)

    Vậy \(ab + c = 2.3 + 9 = 15.\)

    Chọn C.

      bởi Khanh Đơn 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF