-
Câu hỏi:
Gọi M và m lần lượt là GTLN và GTNN của hàm số \(y = x\sqrt {1 - {x^2}}\) trên tập xác định. Tính M-m.
-
A.
1
-
B.
2
-
C.
3
-
D.
4
Lời giải tham khảo:
Đáp án đúng: A
Hàm số \(y = x\sqrt {1 - {x^2}}\) xác định trong đoạn \(\left[ { - 1;1} \right]\)
Ta có \(y' = \sqrt {1 - {x^2}} - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}\)
\(y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = \frac{1}{{\sqrt 2 }}}\\ {x = - \frac{1}{{\sqrt 2 }}} \end{array}} \right.\). Ta lần lượt so sánh các giá trị
\(y\left( { - 1} \right) = 0;y\left( 1 \right) = 0;\)
\(y\left( {\frac{1}{{\sqrt 2 }}} \right) = \frac{{ - 1}}{2};y\left( {\frac{{ - 1}}{{\sqrt 2 }}} \right) = \frac{1}{2}\)
Vậy \(M - m = \frac{1}{2} - \left ( - \frac{1}{2} \right ) = 1\)
Hãy trả lời câu hỏi trước khi xem đáp án và lời giải -
A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
CÂU HỎI KHÁC
- Tìm giá trị nhỏ nhất của hàm số \(y = x^3 - 3x^2 - 9x + 6\) trên \([ - 4;4 ]\).
- Gọi M và m lần lượt là GTLN và GTNN của hàm số \(y = x\sqrt {1 - x^2}\) trên tập xác định. Tính M-m.
- Tìm giá trị lớn nhất M của hàm số \(f(x) = \sin x - \sqrt 3 {\mathop{\rm cosx}\nolimits}\) trên khoảng \(\left( {0;\pi } \right).\)
- Tìm giá trị nhỏ nhất m của hàm số \(y = \log _2^2x - 4{\log _2}x + 1\) trên đoạn [1;8].
- Tìm giá trị của m để hàm số \(y = - {x^3} - 3{x^2} + m\) có giá trị nhỏ nhất trên [-1;1] bằng 0?
- GTLN của hàm số \(y = \frac{{x + 1}}{{\sqrt {{x^2} + 1} }}\) trên khoảng (0;4) đạt được
- GTLN của hàm số y=-x2+4x+7 đạt được khi x bằng:
- GTLN của hàm số \(y = {\sin ^2}x - \sqrt 3 \cos x\) trên đoạn \(\left[ {0;\pi } \right]\)
- GTNN của hàm số \(y = x + 2 + \frac{1}{{x - 1}}\) trên khoảng \(\left( {1; + \infty } \right)\)
- Xét hàm số \(y = \frac{{{x^2}}}{{x - 1}}\)Trong các khẳng định sau, khẳng định nào đúng?