Các em học sinh có thể tham khảo nội dung tài liệu Lý thuyết và bài tập về dạng lượng giác của số phức được HOC247 sưu tầm và tổng hợp bên dưới đây. Tài liệu gồm kiến thức cần nhớ và các câu hỏi trắc nghiệm có đáp án cụ thể hi vọng sẽ giúp các em ôn luyện và củng cố kiến thức chuẩn bị thật tốt cho kì thi sắp đến.
1. Kiến thức cần nhớ
a) Định nghĩa Acgumen của số phức.
- Điểm \(M \ne O\) biểu diễn số phức \(z = a + bi\left( {a,b \in R} \right)\) thì số đo mỗi góc lượng giác tia đầu là \(Ox\) và tia cuối \(OM\) được gọi là acgumen của số phức \(z\).
- Nếu \(\alpha \) là một acgumen của \(z\) thì \(\alpha + k2\pi \) cũng là một acgumen của \(z\) với mỗi \(k \in Z\).
b) Khái niệm về dạng lượng giác của số phức
- Số phức \(z = a + bi\) là dạng đại số của \(z\).
- Số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\) là dạng lượng giác của \(z\), ở đó:
+ \(r\) là mô đun của số phức.
+ \(\varphi \) là acgumen của số phức.
c) Các phép toán với số phức dạng lượng giác:
Cho hai số phức \({z_1} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right),{z_2} = {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)\). Khi đó:
\(\begin{array}{l}{z_1} \pm {z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right) \pm {r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = \left( {{r_1}\cos {\varphi _1} \pm {r_2}\cos {\varphi _2}} \right) + i\left( {{r_1}\sin {\varphi _1} \pm {r_2}\sin {\varphi _2}} \right)\\{z_1}.{z_2} = {r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right).{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right) \\ = {r_1}{r_2}\left[ {\cos \left( {{\varphi _1} + {\varphi _2}} \right) + i\sin \left( {{\varphi _1} + {\varphi _2}} \right)} \right]\\\dfrac{{{z_1}}}{{{z_2}}} = \dfrac{{{r_1}\left( {\cos {\varphi _1} + i\sin {\varphi _1}} \right)}}{{{r_2}\left( {\cos {\varphi _2} + i\sin {\varphi _2}} \right)}} = \dfrac{{{r_1}}}{{{r_2}}}\left[ {\cos \left( {{\varphi _1} - {\varphi _2}} \right) + i\sin \left( {{\varphi _1} - {\varphi _2}} \right)} \right]\end{array}\)
d) Công thức Moivre:
Cho số phức \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\). Khi đó:
\({z^n} = {\left[ {r\left( {\cos \varphi + i\sin \varphi } \right)} \right]^n} = {r^n}\left( {\cos n\varphi + i\sin n\varphi } \right)\)
2. Một số dạng toán thường gặp
Dạng 1: Chuyển số phức từ dạng đại số sang dạng lượng giác.
Cho số phức \(z = a + bi\), viết \(z\) dưới dạng \(z = r\left( {\cos \varphi + i\sin \varphi } \right)\)
Phương pháp:
- Bước 1: Tính \(r = \sqrt {{a^2} + {b^2}} \)
- Bước 2: Tính \(\varphi \) thỏa mãn \(\left\{ \begin{array}{l}\cos \varphi = \dfrac{a}{r}\\\sin \varphi = \dfrac{b}{r}\end{array} \right.\)
Dạng 2: Tính giá trị, rút gọn biểu thức.
Phương pháp:
Sử dụng các phép toán cộng, trừ, nhân, chia số phức, công thức Moivre để tính giá trị và rút gọn các biểu thức.
3. Bài tập
Bài 1: Cho số phức z thảo mãn \(\left| z-4i-2 \right|=4.\) Tìm giá trị nhỏ nhất của \(\left| z \right|.\)
A. 1
B. 3
C. 7
D. 8
Lời giải
Giả sử z=a+bi, ta có: \(\left| a+bi-3+4i \right|=4\Rightarrow {{\left( a-3 \right)}^{2}}+{{\left( b+4 \right)}^{2}}=16\)
Đặt \(\left\{ \begin{align} & a-3=4\sin \varphi \\ & b+4=4\cos \varphi \\ \end{align} \right.\)
\(\Rightarrow \left\{ \begin{align} & a=3+4\sin \varphi \\ & b=4\cos \varphi -4 \\ \end{align} \right.\)
\(\begin{align} & \Rightarrow {{\left| z \right|}^{2}}={{a}^{2}}+{{b}^{2}}=9+16{{\sin }^{2}}\varphi +24\sin \varphi +16-32\cos \varphi \\ & =41+24\sin \varphi -32\cos \varphi =41+40\left( \frac{3}{5}\sin \varphi -\frac{4}{5}\text{cos}\varphi \right) \\ \end{align}\)
Đặt \(\text{cos}\varphi \text{=}\frac{3}{5},\sin \varphi =\frac{4}{5}\Rightarrow {{\left| z \right|}^{2}}={{a}^{2}}+{{b}^{2}}=41+40\sin \left( \varphi -\alpha \right)\ge 1.\)
Dấu ''='' xảy ra khi \(\varphi -\alpha =-\frac{\pi }{2}+k2\pi \Rightarrow \varphi =-\frac{\pi }{2}+\alpha +k2\pi .\)
Vậy \(\min \left| z \right|=1.\)
Chọn A.
Bài 2: Cho \(\text{w}=\sin \alpha +i\cos \alpha \) với \(0<\alpha <\frac{\pi }{2}\) thỏa mãn \(\left| {{\text{w}}^{2}}+1 \right|=2\left| \text{w} \right|\)
Giá trị của \(P={{\left( 26{{\left| \overline{\text{w}} \right|}^{2}}-3 \right)}^{2018}}\) là
A. \(P={{23}^{2018}}.\)
B. \(P=-{{23}^{2018}}.\)
C. \(P={{23}^{2018}}i.\)
D. \(P={{29}^{2018}}.\)
Lời giải
Ta có: \({{\text{w}}^{2}}+1={{\left( \sin \alpha +i\cos \alpha \right)}^{2}}+1=1-\cos 2\alpha +i\sin 2\alpha \Rightarrow \left| {{\text{w}}^{2}}+1 \right|=\sqrt{2-2\cos 2\alpha }.\)
\(2\left| \text{w} \right|=\sqrt{{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha }=2\)
Từ giả thiết: \(\left| {{\text{w}}^{2}}+1 \right|=2\left| \text{w} \right|\Rightarrow \cos 2\alpha =0\Leftrightarrow \alpha =\frac{\pi }{4}\) vì \(0<\alpha <\frac{\pi }{2}\).
\(\Rightarrow \text{w}=\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}\Rightarrow \overline{\text{w}}=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}\Rightarrow {{\left| \overline{\text{w}} \right|}^{2}}=1\)
Vậy \(P={{23}^{2018}}.\)
Chọn A
...
--(Nội dung đầy đủ, chi tiết vui lòng xem tại online hoặc đăng nhập để tải về máy)---
Trên đây là một phần trích đoạn nội dung Lý thuyết và bài tập về dạng lượng giác của số phức. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.
Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.
Chúc các em học tập tốt!
Tài liệu liên quan
Tư liệu nổi bật tuần
-
Đề cương ôn tập giữa HK1 môn Vật lý 12 năm 2023 - 2024
09/10/20231334 -
Đề cương ôn tập giữa HK1 môn Ngữ văn 12 năm 2023-2024
09/10/2023931 -
100 bài tập về Dao động điều hoà tự luyện môn Vật lý lớp 11
14/08/2023317 - Xem thêm