OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 72 trang 113 SBT Toán 9 Tập 2

Bài tập 72 tr 113 sách BT Toán lớp 9 Tập 2

Cho tam giác \(ABC\) vuông ở \(A\) và đường cao \(AH.\) Vẽ đường tròn tâm \(O\) đường kính \(AB.\) Biết \(BH = 2cm\) và \(HC = 6cm.\) Tính:

\(a)\) Diện tích hình tròn \((O).\)

\(b)\) Tổng diện tích hai hình viên phân \(AmH\) và \(BnH\) (ứng với các cung nhỏ).

\(c)\) Diện tích hình quạt tròn \(AOH\) (ứng với cung nhỏ \(AH\)).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức:

+) Trong tam giác vuông, bình phương một cạnh góc vuông bằng tích cạnh huyền với hình chiếu của cạnh góc vuông đó trên cạnh huyền.

+) Diện tích \(S\) của một hình tròn bán kính \(R\) được tính theo công thức: \(S=\pi.R^2\)

+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.

Lời giải chi tiết

\(a)\) \(∆ABC\) có \(\widehat A = {90^0}\)

Theo hệ thức lượng trong tam giác vuông ta có:

\(A{B^2} = BH.BC \)\(\Rightarrow A{B^2} = 2.\left( {2 + 6} \right) = 16\)

Suy ra \(AB = 4\, (cm)\)

Diện tích hình tròn tâm \(O\) là:

\(S = \displaystyle \pi {\left( {{{AB} \over 2}} \right)^2} \)\(= \displaystyle \pi {\left( {{4 \over 2}} \right)^2} = 4\pi \) \( (cm^2)\)

\(b)\) Trong tam giác vuông \(ABC\) ta có:

\(A{H^2} = HB.HC = 2.6 = 12\)

Suy ra \(AH = 2\sqrt 3 \) \((cm)\)

\(S_{\Delta AHB}= \displaystyle {1 \over 2}AH.BH \)\(= \displaystyle {1 \over 2}.2.2\sqrt 3  = 2\sqrt 3 \) \( (cm^2)\)

Tổng diện  tích hai hình viên phân \(AmH\) và \(BnH\) bằng diện tích nửa hình tròn tâm \(O\) trừ diện tích \(∆AHB\) nên tổng diện tích hai hình viên phân là:

\(S = 2\pi  - 2\sqrt 3  = 2\left( {\pi  - \sqrt 3 } \right)\) \( (cm^2)\)

\(c)\) \(∆BOH\) có \(OB = OH = BH = 2 cm\)

\( \Rightarrow \Delta BOH\) đều

\( \Rightarrow \widehat B = {60^0}\)

\(\widehat B = \displaystyle {1 \over 2} sđ \overparen{AmH}\) (tính chất góc nội tiếp)

\( \Rightarrow  sđ \overparen{AmH}\) \( = 2\widehat B = {120^0}\)

\(S_{qAOH}=\displaystyle {{\pi {{.2}^2}.120} \over {360}} = \displaystyle {{4\pi } \over 3}\)  \( (cm^2)\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 72 trang 113 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF