OPTADS360
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Toán 7 Kết nối tri thức Luyện tập chung trang 70


Mời các em học sinh tham khảo lý thuyết bài Luyện tập chung trang 70 đã được HỌC247 biên soạn dưới đây, cùng với phần tổng hợp kiến thức cơ bản cần nắm, đây sẽ tài liệu hữu ích cho các em học tốt môn Toán 7 Kết nối trí thức. 

ADMICRO/lession_isads=0
 
 

Tóm tắt lý thuyết

1.1. Quan hệ giữa góc và cạnh đối diện trong một tam giác

Định lí 1

Trong một tam giác, góc đối diện với cạnh lớn hơn là góc lớn hơn.

Định lí 2

Trong một tam giác, cạnh đối diện với góc lớn hơn là cạnh lớn hơn.

Nhận xét

+ Trong tam giác vuông, góc vuông là góc lớn nhất nên cạnh đối diện với góc vuông (tức là cạnh huyền) là cạnh lớn nhất.

+ Tương tự trong tam giác tù, cạnh đối diện với góc tù là cạnh lớn nhất.

1.2. Quan hệ giữa đường vuông góc và đường xiên

a) Khái niệm đường vuông gốc và đường xiên

Từ một điểm A không nằm trên đường thẳng d, kẻ đường thẳng vuông góc với đ tại Hình sau.

Đoạn thẳng AH gọi là đoạn vuông góc hay đường vuông góc kẻ từ điểm A đến đường thẳng d. Ta gọi H là chân đường vuông góc hạ từ A xuống d.

Lấy một điểm M trên d (M khác H), kẻ đoạn thẳng AM. Đoạn thẳng AM gọi là một đường xiên kẻ từ A đến đường thẳng d.

b) So sánh đường vuông góc và đường xiên

Định lí

Trong các đường xiên và đường vuông góc kẻ từ một điểm nằm ngoài một đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.

Chú ý: Vì độ dài đoạn thẳng AH là ngắn nhất trong các đoạn thẳng kẻ từ A đến d nên độ dài đoạn thẳng AH được gọi là khoảng cách từ điểm A đến đường thẳng d. 

1.3. Quan hệ giữa ba cạnh của một tam giác

Định lí

Trong một tam giác, độ dài của một cạnh bất kì luôn nhỏ hơn tổng độ dài hai cạnh còn lại.

Ba hệ thức:

AB < AC + BC,

AC < AB + BC,

BC < AB + AC,

gọi là các bất đẳng thức tam giác.

Từ Định lí trên, người ta suy ra được tính chất sau:

Trong một tam giác, độ dài của một cạnh bất kì luôn lớn hơn hiệu độ dài hai cạnh còn lại.

Nhận xét: Nếu kí hiệu a, b, c là độ dài ba cạnh tuỳ ý của một tam giác thì từ định lí và tính chất vừa nêu ta có:

\(b - c < a < b + c\)

Chú ý: Để kiểm tra ba độ dài có là độ dài ba cạnh của một tam giác hay không, ta chỉ cần so sánh độ dài lớn nhất có nhỏ hơn tổng hai độ dài còn lại hoặc độ dài nhỏ nhất có lớn hơn hiệu hai độ dài còn lại hay không.

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA

Bài tập minh họa

Câu 1: Cho tam giác MNP có độ dài các cạnh MN = 3 cm, NP = 5 cm, MP = 7 cm. Hãy xác định góc đối diện với từng cạnh rồi sắp xếp các góc của tam giác MNP theo thứ tự từ bé đến lớn.

Hướng dẫn giải

Góc P đối diện với cạnh MN

Góc M đối diện với cạnh NP

Góc N đối diện với cạnh MP.

Ta có: MN < NP < MP nên \(\widehat P < \widehat M < \widehat N\)( định lí)

Vậy sắp xếp các góc của tam giác MNP theo thứ tự từ bé đến lớn là: \(\widehat P;\widehat M;\widehat N\).

Câu 2: Cho hình vuông ABCD  có độ dài cạnh bằng 2 cm, M là một điểm trên cạnh BC như Hình sau

a) Hãy chỉ ra các đường vuông góc và đường xiên kẻ từ điểm A đến đường thẳng BC.

b) So sánh hai đoạn thẳng AB và AM.

c) Tìm khoảng cách từ điểm C đến đường thẳng AB.

Hướng dẫn giải

a) Đường vuông góc kẻ từ A đến BC là: AB

Đường xiên kẻ từ A đến BC là: AM

b) AB < AM (Trong các đường xiên và đường vuông góc kẻ từ 1 điểm nằm ngoài 1 đường thẳng đến đường thẳng đó thì đường vuông góc là đường ngắn nhất.)

c) Vì CB \( \bot \) AB nên khoảng cách từ C đến AB là độ dài CB =  2 cm

Câu 3: Hỏi ba độ dài nào sau đây không thể là độ dài ba cạnh của một tam giác? Vì sao? Hãy vẽ tam giác nhận ba độ dài còn lại làm độ dài 3 cạnh.

a) 5 cm, 4 cm, 6 cm.

b) 3 cm, 6 cm, 10 cm.

Hướng dẫn giải

a) Vì 5+4 > 6 nên ba độ dài 5 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của một tam giác.

b) Vì 3 + 6 = 9 < 10 nên ba độ dài 3 cm, 6 cm, 10 cm không thể là độ dài ba cạnh của một tam giác.

ADMICRO

Luyện tập bài Luyện tập trang 70 Toán 7 KNTT

Qua bài giảng ở trên, giúp các em học sinh:

- Hệ thống và ôn tập lại nhưng nội dung đã học.

- Áp dụng vào giải các bài tập SGK Toán 7 Kết nối tri thức.

3.1. Bài tập trắc nghiệm bài Luyện tập trang 70 Toán 7 KNTT

Để củng cố bài học xin mời các em cùng làm Bài kiểm tra Trắc nghiệm Toán 7 Kết nối tri thức Chương 9 Luyện tập chung trang 70 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.

Câu 4-10: Mời các em đăng nhập xem tiếp nội dung và thi thử Online để củng cố kiến thức và nắm vững hơn về bài học này nhé!

3.2. Bài tập SGK bài Luyện tập trang 70 Toán 7 KNTT

Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 7 Kết nối tri thức Chương 9 Luyện tập chung trang 70 để giúp các em nắm vững bài học và các phương pháp giải bài tập.

Giải bài 9.14 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 9.15 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 9.16 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 9.17 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 9.18 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Giải bài 9.19 trang 71 SGK Toán 7 Kết nối tri thức tập 2 - KNTT

Hỏi đáp bài Luyện tập trang 70 Toán 7 KNTT

Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!

Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!

-- Mod Toán Học 7 HỌC247

NONE
OFF