Giải bài 2.22 tr 76 SBT Hình học 11
Cho tứ diện ABCD. Gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ABD. Chứng minh rằng (G1G2G3) // (BCD).
Hướng dẫn giải chi tiết
Gọi I, J và K lần lượt là trung điểm của các cạnh BC, CD và BD. Theo tính chất trọng tâm của tam giác ta có:
\(\frac{{A{G_1}}}{{AI}} = \frac{{A{G_2}}}{{AJ}} = \frac{{A{G_3}}}{{AK}} = \frac{2}{3}\) ⇒ G1G2 // IJ
IJ ⊂ (BCD) ⇒ G1G2 // (BCD)
Tương tự ta có G2G3 // (BCD)
G1G2, G2G3 ⊂ (G1G2G3)
Vậy: (G1G2G3) // (BCD).
-- Mod Toán 11 HỌC247
Bài tập SGK khác
Bài tập 3 trang 71 SGK Hình học 11
Bài tập 4 trang 71 SGK Hình học 11
Bài tập 2.23 trang 76 SBT Hình học 11
Bài tập 2.24 trang 77 SBT Hình học 11
Bài tập 2.25 trang 77 SBT Hình học 11
Bài tập 2.26 trang 77 SBT Hình học 11
Bài tập 2.27 trang 77 SBT Hình học 11
Bài tập 2.28 trang 77 SBT Hình học 11
Bài tập 2.29 trang 77 SBT Hình học 11
Bài tập 2.30 trang 78 SBT Hình học 11
Bài tập 2.31 trang 78 SBT Hình học 11
Bài tập 29 trang 67 SGK Hình học 11 NC
Bài tập 30 trang 67 SGK Hình học 11 NC
Bài tập 31 trang 68 SGK Hình học 11 NC
Bài tập 32 trang 68 SGK Hình học 11 NC
Bài tập 33 trang 68 SGK Hình học 11 NC
Bài tập 34 trang 68 SGK Hình học 11 NC
Bài tập 35 trang 68 SGK Hình học 11 NC
Bài tập 36 trang 68 SGK Hình học 11 NC
Bài tập 37 trang 68 SGK Hình học 11 NC
-
Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. gọi M là trung điểm của AB.
bởi Thanh Nguyên 22/01/2021
(I) (ADF) // (BCE) (II) (MOO’) // (ADF)
(III) (MOO’) // (BCE) (IV) (AEC) // (BDF)
Khẳng định nào sau đây là đúng
A.chỉ có (1) đúng
B. chỉ có (1) và (2) đúng
C. (I), (II), (III) đúng
D. chỉ có (1) và (IV) đúng
Theo dõi (0) 1 Trả lời -
Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.
bởi Dương Minh Tuấn 22/01/2021
A. a và b có một điểm chúng duy nhất
B. a và b không có điểm chung nào
C. a và b trùng nhau
D. a và b song song hoặc trùng nhau
Theo dõi (0) 1 Trả lời