Giải bài 1 trang 78 SGK Toán 10 Chân trời sáng tạo tập 1
Cho tam giác ABC. Biết \(a = 49,4;b = 26,4;\widehat C = {47^ \circ }20'.\) Tính hai góc \(\widehat A,\widehat B\) và cạnh c.
Hướng dẫn giải chi tiết Bài 1
Phương pháp giải
Bước 1: Tính cạnh c: Áp dụng định lí cosin: \({c^2} = {b^2} + {a^2} - 2ab\cos C\)
Bước 2: Tính hai góc \(\widehat A,\widehat B\): Áp dụng định lí sin: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
Lời giải chi tiết
Áp dụng định lí cosin trong tam giác ABC, ta có: \(\begin{array}{l}{c^2} = {b^2} + {a^2} - 2ab\cos C\\ \Leftrightarrow {c^2} = 26,{4^2} + 49,{4^2} - 2.26,4.49,4\cos {47^ \circ }20'\\ \Rightarrow c \approx 37\end{array}\)
Áp dụng định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}}\)
\(\begin{array}{l} \Leftrightarrow \frac{{49,4}}{{\sin A}} = \frac{{26,4}}{{\sin B}} = \frac{{37}}{{\sin {{47}^ \circ }20'}}\\ \Rightarrow \sin A = \frac{{49,4.\sin {{47}^ \circ }20'}}{{37}} \approx 0,982 \Rightarrow \widehat A \approx {79^ \circ }\\ \Rightarrow \widehat B \approx {180^ \circ } - {79^ \circ } - {47^ \circ }20' = {53^ \circ }40'\end{array}\)
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 2 trang 78 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 78 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
-
Cho \(\displaystyle \tan a = 2\). Cho biết giá trị của biểu thức \(\displaystyle C = {{\sin a} \over {{{\sin }^3}a + 2{{\cos }^3}a}}\) là:
bởi Suong dem 30/08/2022
(A) \(\displaystyle {5 \over {12}}\)
(B) \(\displaystyle 1\)
(C) \(\displaystyle {{ - 8} \over {11}}\)
(D) \(\displaystyle {{ - 10} \over {11}}\)
Theo dõi (0) 1 Trả lời