OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1

Cho tam giác ABC với ba cạnh a, b, c. Chứng minh rằng:

 \(\frac{{\cos A}}{a} + \frac{{\cos B}}{b} + \frac{{\cos C}}{c} = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

Áp dụng định lí côsin:

Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\) 

Lời giải chi tiết

Từ định lí côsin ta suy ra
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

Suy ra:

\(\begin{array}{l}\frac{{\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}}}{a} + \frac{{\frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}}}{b} + \frac{{\frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}}}{c}\\ = \frac{{\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - c} \right)}}{{2abc}}\\ = \frac{{{a^2} + {b^2} + {c^2}}}{{2abc}}\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

NONE
OFF