Giải bài 5 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1
Cho tam giác ABC có \(BC = a,CA = b,AB = c\). Mệnh đề nào sau đây đúng?
A. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn
B. Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A tù
C. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A nhọn
D. Nếu \({b^2} + {c^2} - {a^2} < 0\) thì góc A vuông
Hướng dẫn giải chi tiết Bài 5
Phương pháp giải
Áp dụng định lí côsin:
Trong tam giác ABC với BC = a, CA = b, AB = c, ta có:
\(\begin{array}{l}{a^2} = {b^2} + {c^2} - 2bc\cos A\\{b^2} = {c^2} + {a^2} - 2ca\cos B\\{c^2} = {a^2} + {b^2} - 2ab\cos C\end{array}\)
Lời giải chi tiết
Áp dụng định lí côsin ta có: \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
Mà \(a,b,c > 0 \Rightarrow 2bc > 0\)
Nên dấu của \(\cos A\) phụ thuộc vào tử số \({b^2} + {c^2} - {a^2}\)
Ta có \(\begin{array}{l}0^\circ < \widehat A < 90^\circ \Rightarrow \cos A > 0\\90^\circ < \widehat A < 180^\circ \Rightarrow \cos A < 0\\\widehat A = 90^\circ \Rightarrow \cos A = 0\\\widehat A = 180^\circ \Rightarrow \cos A = - 1\end{array}\)
=> Nếu \({b^2} + {c^2} - {a^2} > 0\) thì góc A nhọn
Chọn A.
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Giải bài 3 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 8 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 9 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 10 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 2 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 3 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 4 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 5 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 6 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Giải bài 7 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.