OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Giải bài 7 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1

Cho tam giác ABC. Chứng minh rằng:

\(\cot A + \cot B + \cot C = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết Bài 7

Phương pháp giải

Tính \(\cot A,\cot B,\cot C\)bằng cách: Áp dụng hệ quả của định lí sin và định lí cosin:

\(\sin A = \frac{a}{{2R}}\); \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

Lời giải chi tiết

Áp dụng hệ quả của định lí sin và định lí cosin, ta có:

\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)

và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)

Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)

\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Giải bài 7 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
 
 

Bài tập SGK khác

Giải bài 5 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 79 SGK Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 8 trang 80 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 9 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 10 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 1 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 2 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 3 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 4 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 5 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 6 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

Giải bài 7 trang 81 SBT Toán 10 Chân trời sáng tạo tập 1 - CTST

NONE
OFF