OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 3.33 trang 164 SBT Hình học 10

Giải bài 3.33 tr 164 SBT Hình học 10

Viết phương trình chính tắc của elip (E) F1 và Fbiết:

a) (E) đi qua hai điểm \(M\left( {4;\frac{9}{5}} \right)\) và \(N\left( {3;\frac{{12}}{5}} \right)\);

b) (E) đi qua \(M\left( {\frac{3}{{\sqrt 5 }};\frac{4}{{\sqrt 5 }}} \right)\) và tam giác MF1F2 vuông tại M.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Xét elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

(E) đi qua  \(M\left( {4;\frac{9}{5}} \right)\) và \(N\left( {3;\frac{{12}}{5}} \right)\) nên thay tọa độ của M và N vào phương trình của (E) ta được:

\(\left\{ \begin{array}{l}
\frac{{16}}{{{a^2}}} + \frac{{81}}{{25{b^2}}} = 1\\
\frac{9}{{{a^2}}} + \frac{{144}}{{25{b^2}}} = 1
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
{a^2} = 25\\
{b^2} = 9
\end{array} \right.\)

Vậy phương trình của (E) là: \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\)

b) Xét elip (E): \(\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\)

Vì \(M\left( {\frac{3}{{\sqrt 5 }};\frac{4}{{\sqrt 5 }}} \right) \in \left( E \right)\) nên \(M\left( {\frac{3}{{\sqrt 5 }};\frac{4}{{\sqrt 5 }}} \right) \in \left( E \right)\)

Ta có :

\(\begin{array}{l}
\widehat {{F_1}M{F_2}} = {90^0} \Rightarrow OM = O{F_1}\\
 \Rightarrow {c^2} = O{M^2} = \frac{9}{5} + \frac{{16}}{5} = 5
\end{array}\)

và \({a^2} = {b^2} + {c^2} = {b^2} + 5\)

Thay vào (1) ta được :

\(\frac{9}{{5\left( {{b^2} + 5} \right)}} + \frac{{16}}{{5{b^2}}} = 1\)

⇒ 9b2 + 16(b2 + 5) = 5b2(b2 + 5)

⇒ b4 = 16

⇒ b= 4

Suy ra a2 = 9

Vậy phương trình chính tắc của (E) là: \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\)

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 3.33 trang 164 SBT Hình học 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Bùi Minh Tuấn

    Giúp tớ với

    Phương trình chính tắc của elip có 2 tiêu điểm F1(-2;0) và F2(2;0) và đi qua điểm M(2;3)

    Theo dõi (0) 1 Trả lời
  • Nguyễn Văn Doanh

    Theo dõi (0) 0 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Lan Ngọc

    Theo dõi (1) 6 Trả lời
NONE
OFF