OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 31 trang 103 SGK Hình học 10 NC

Bài tập 31 trang 103 SGK Hình học 10 NC

Tìm tọa độ các tiêu điểm, các đỉnh, độ dài trục lớn, độ dài trục bé của mỗi elip có phương trình sau 

a) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{4} = 1\);

b) \(\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1\)

c) \({x^2} + 4{y^2} = 4\)

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Ta có \(a = 5;b = 2;c = \sqrt {{a^2} - {b^2}}  = \sqrt {21} \)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {21} ;0} \right),{F_2}\left( {\sqrt {21} ;0} \right)\)

Tọa độ các đỉnh: A1(−5;0); A2(5;0); B1(0;−2); B2(0;2)

Độ dài trục lớn 2a = 10, độ dài trục bé 2b = 4

b) Ta có: \(a = 3;b = 2;c = \sqrt {{a^2} - {b^2}}  = \sqrt 5 \)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 5 ;0} \right),{F_2}\left( {\sqrt 5 ;0} \right)\)

Tọa độ các đỉnh: A1(−3;0); A2(3;0); B1(0;−2); B2(0;2).

Độ dài trục lớn 2a = 6, độ dài trục bé 2b = 4

c) Ta có: \({x^2} + 4{y^2} = 4 \Leftrightarrow \frac{{{x^2}}}{4} + {y^2} = 1\)

\(a = 2;b = 1;c = \sqrt {{a^2} - {b^2}}  = \sqrt 3 \).

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 3 ;0} \right),{F_2}\left( {\sqrt 3 ;0} \right)\)

Tọa độ các đỉnh: A1(−2;0); A2(2;0); B1(0;−1); B2(0;1).

Độ dài trục lớn 2a = 4, độ dài trục bé 2b = 2

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 31 trang 103 SGK Hình học 10 NC HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Bi do

     Xác đinh độ dài các trục, tọa độ tiêu điểm , tọa độ các đỉnh và vẽ các elip có phương trình sau:

    4x2 + 9y2 = 36

    Theo dõi (0) 1 Trả lời
  • Lê Minh

    Trong mặt phẳng tọa độ Oxy, cho elip \((E):\frac{x^2}{16}+\frac{y^2}{9}=1\). Tìm tọa độ các điểm M trên (E) sao cho \(MF_1=2MF_2\) ( với \(F_1,F_2\), lần lượt là các tiêu điểm bên trái, bên phải của (E)).

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Thùy Trang

    Trong mặt phẳng tọa độ Oxy, cho elip (E) có tiêu điểm thứ nhất \((-\sqrt{3};0)\) và đi qua điểm \(M\left ( 1;\frac{4\sqrt{33}}{5} \right ),\) hãy xác định tọa độ các đỉnh của (E).

    Theo dõi (0) 1 Trả lời
NONE
OFF