OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng tọa độ Oxy, cho elip (E) có tiêu điểm thứ nhất \((-\sqrt{3};0)\)

Trong mặt phẳng tọa độ Oxy, cho elip (E) có tiêu điểm thứ nhất \((-\sqrt{3};0)\) và đi qua điểm \(M\left ( 1;\frac{4\sqrt{33}}{5} \right ),\) hãy xác định tọa độ các đỉnh của (E).

  bởi Thùy Trang 07/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • (E) có tiêu điểm \(F_{1}(-\sqrt{3};0)\) nên \(c=\sqrt{3}.\)

    PT chính tắc của (E): \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a> b> 0)\)

    Ta có \(M\left ( 1;\frac{4\sqrt{33}}{5} \right )\in (E)\Rightarrow \frac{1}{a^{2}}+\frac{528}{b^{2}}=1(1),a^{2}=b^{2}+c^{2}=b^{2}+3\) thay vào (1) ta được:

    \(25b^{4}-478b^{2}-1584=0\Leftrightarrow b^{2}=22\Leftrightarrow b=\sqrt{22}\)

    Suy ra \(a^{2}=25\Rightarrow a=5.\)

    Vậy (E) có bốn đỉnh là (-5; 0); (5; 0); (0;\(-\sqrt{22}\)); (0; \(\sqrt{22}\))

      bởi Phạm Khánh Linh 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF