OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 2.28 trang 92 SBT Hình học 10

Giải bài 2.28 tr 92 SBT Hình học 10

Trong mặt phẳng Oxy cho bốn điểm A(3; 4), B(4; 1), C(2; -3), D(-1; 6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.

AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Phương pháp: Muốn chứng minh tứ giác ABCD nội tiếp được trong một đường tròn, ta chứng minh tứ giác này có hai góc đối bù nhau. Khi đó hai góc này có cô sin đối nhau.

Theo giả thiết ta có:

\(\overrightarrow {AB}  = \left( {1; - 3} \right),\overrightarrow {AD}  = \left( { - 4;2} \right),\overrightarrow {CB}  = \left( {2;4} \right),\overrightarrow {CD}  = \left( { - 3;9} \right)\)

Do đó:

\(\begin{array}{l}
\cos \left( {AB,AD} \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AD} } \right|}} = \frac{{1.\left( { - 4} \right) + \left( { - 3} \right).2}}{{\sqrt {1 + 9} .\sqrt {16 + 4} }} =  - \frac{1}{{\sqrt 2 }}\\
\cos \left( {CB,AD} \right) = \frac{{\overrightarrow {CB} .\overrightarrow {CD} }}{{\left| {\overrightarrow {CB} } \right|.\left| {\overrightarrow {CD} } \right|}} = \frac{{2.\left( { - 3} \right) + 4.9}}{{\sqrt {4 + 16} .\sqrt {9 + 81} }} = \frac{1}{{\sqrt 2 }}
\end{array}\)

Vì \(\cos \left( {AB,AD} \right) =  - \cos \left( {CB,AD} \right)\) nên hai góc này bù nhau. Vậy tứ giác ABCD nội tiếp được trong một đường tròn.

-- Mod Toán 10 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 2.28 trang 92 SBT Hình học 10 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • Thanh's Hiền's

    Theo dõi (0) 0 Trả lời
  • Thương Thương

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Trần Hằng

    Theo dõi (0) 0 Trả lời
  • Ngọc Lan
    cho vecto a=( x,2) vecto b (-5,1) c=(8;-7) tìm x để c =2a-3b
    Theo dõi (0) 3 Trả lời
NONE
OFF