OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Xác định tọa độ điểm đối xứng của M0(2;-3;1) qua mặt phẳng \(\left( \alpha \right):x + 3y - z + 2 = 0.\)

Tìm tọa độ điểm đối xứng của M0(2;-3;1) qua mặt phẳng \(\left( \alpha  \right):x + 3y - z + 2 = 0.\)

  bởi Trần Bảo Việt 25/05/2021
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Trước hết, ta xác định hình chiếu vuông góc H của M0 trên (\(\alpha \)). Gọi d là đường thẳng qua M0 và vuông góc với (\(\alpha \)), ta có

    \(d:\left\{ \matrix{  x = 2 + t \hfill \cr  y =  - 3 + 3t \hfill \cr  z = 1 - t. \hfill \cr}  \right.\)

    Toạ độ điểm H(x; y; z) thoả mãn hệ :

    \(\left\{ \matrix{  x = 2 + t \hfill \cr  y =  - 3 + 3t \hfill \cr  z = 1 - t \hfill \cr  x + 3y - z + 2 = 0 \hfill \cr}  \right. \Rightarrow H = \left( {{{28} \over {11}}; - {{15} \over {11}};{5 \over {11}}} \right).\)

    Gọi M' là điểm đối xứng của M0 qua mặt phẳng (\(\alpha \)) thì H là trung điểm của M0M' nên ta có :

    \(\left\{ \matrix{  {{{x_{M'}} + 2} \over 2} = {{28} \over {11}} \hfill \cr  {{{y_{M'}} - 3} \over 2} =  - {{15} \over {11}} \hfill \cr  {{{z_{M'}} + 1} \over 2} = {5 \over {11}} \hfill \cr}  \right. \Rightarrow M' = \left( {{{34} \over {11}};{3 \over {11}}; - {1 \over {11}}} \right).\)

      bởi Nguyễn Trọng Nhân 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF