OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Với hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD), góc giữa cạnh SD và mặt phẳng (ABCD) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằng:

A. \(\sqrt 3 {a^3}\)            

B. \(\dfrac{{\sqrt 3 {a^3}}}{6}\)             

C. \(\dfrac{{\sqrt 3 {a^3}}}{3}\)      

D. \(\dfrac{{\sqrt 3 {a^3}}}{9}\) 

  bởi bala bala 09/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow AD\) là hình chiếu của \(SD\) trên \(\left( {ABCD} \right).\)

    \(\begin{array}{l} \Rightarrow \angle \left( {SD,\,\,\,\left( {ABCD} \right)} \right) = \angle SDA = {60^0}.\\ \Rightarrow SA = AD.\tan {60^0} = a\sqrt 3 .\\ \Rightarrow {V_{SABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 3 .{a^2} = \dfrac{{{a^3}\sqrt 3 }}{3}.\end{array}\) 

    Chọn  C.

      bởi Nguyễn Ngọc Sơn 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF