OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Viết phương trình mặt phẳng (P) chứa đường thẳng d biết khoảng cách từ A(-1;2;3) đến (P) bằng 3

Khó quá, em bỏ cuộc rồi, mọi người giúp vs! Em cảm ơn nhiều ạ.

Viết phương trình mặt phẳng (P) chứa đường thẳng \(d:\left\{\begin{matrix} x=t\\ y=-1+2t\\ z=1 \end{matrix}\right.\) và khoảng cách từ A(-1;2;3) đến (P) bằng 3.

  bởi Lê Tấn Thanh 07/02/2017
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • (d) đi qua M (0;-1; 1), có 1 VTCP
    \(\vec{u}=(1;2;0)\)
    \(d\subset (P)\Rightarrow M(0;-1;1)\in (P)\)

    Gọi 1 VTPT của (P) là \(\vec{n}=(a;b;c) \ (a^2+b^2+c^2\neq 0)\)
    \(pt \ (P): a(x-0)+b(y+1)+c(z-1)=0\)
    \(ax+by+cz+b-c=0\)
    \(d \subset (P)\) nên \(\vec{u_d}.\vec{n_p}=0\)
    \(\Leftrightarrow a+2b=0\Leftrightarrow a=-2b \ \ (1)\)
    \(d(A;(P))=3\)
    \(\Leftrightarrow \frac{\left | -a+2b+3c+b-c \right |}{\sqrt{a^2+b^2+c^2}}=3\)
    \(\Leftrightarrow \left | -a+2b+3c+b-c \right |=3\sqrt{a^2+b^2+c^2}\)
    \(\Leftrightarrow \left | 5b+2c \right |=3\sqrt{5b^2+c^2}\)
    \(\Leftrightarrow 25b^2+4c^2+20bc=9(5b^2+c^2)\)
    \(\Leftrightarrow 20b^2-20bc+5c^2=0\)
    \(\Leftrightarrow 4b^2-4bc+c^2=0\)
    \(\Leftrightarrow (2b-c)^2=0\Leftrightarrow 2b=c\)  (2)
    Chọn b = 1, ta có a = -2, c = 1
    Phương trình  (P): -2x + y + 2z - 1 = 0

      bởi Nguyễn Anh Hưng 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF