OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Viết phương trình đường vuông góc chung của cặp đường thẳng sau: \(\eqalign{ & \;\;d:{{x - 2} \over 2} = {{y - 3} \over 3} = {{z + 4} \over { - 5}},\cr&\;\;\;\;\;d':{{x + 1} \over 3} = {{y - 4} \over { - 2}} = {{z - 4} \over { - 1}}\cr} \)

Viết phương trình đường vuông góc chung của cặp đường thẳng sau: \(\eqalign{  & \;\;d:{{x - 2} \over 2} = {{y - 3} \over 3} = {{z + 4} \over { - 5}},\cr&\;\;\;\;\;d':{{x + 1} \over 3} = {{y - 4} \over { - 2}} = {{z - 4} \over { - 1}}\cr} \)

  bởi Anh Thu 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(\overrightarrow {{u_d}}  = \left( {2;3; - 5} \right),\overrightarrow {{u_{d'}}}  = \left( {3; - 2; - 1} \right).\)

    Khi đó vì \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = \left( { - 13; - 13; - 13} \right)\) nên đường vuông góc chung \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u  = \left( {1;1;1} \right).\)

    Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa d và \(\Delta \) thì \(\left( \alpha  \right)\) đi qua \({M_o}(2;3; - 4)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow u } \right] = \left( {8, - 7, - 1} \right).\)

    Có phương trình của mp\(\left( \alpha  \right)\) là: \(8\left( {x - 2} \right) - 7\left( {y - 3} \right) - 1\left( {z + 4} \right) = 0\)

    \( \Leftrightarrow 8x - 7y - z + 1 = 0.\)

    Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(d'\) và \(\Delta \) thì \(\left( \beta  \right)\)  đi qua điểm \(M_o'\left( { - 1;4;4} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow u ,\overrightarrow {{u_{d'}}} } \right] = \left( {1;4; - 5} \right).\)

    Phương trình của mp\(\left( \beta  \right)\) là :\(1\left( {x + 1} \right) + 4\left( {y - 4} \right) - 5\left( {z - 4} \right) = 0\)

    \( \Leftrightarrow x + 4y - 5z + 5 = 0.\)

    Vậy đường vuông góc chung \(\Delta \) của \(d\) và \(d'\) là giao tuyến của hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) . Nó có phương trình tham số là:

    \(\left\{ \matrix{  x = t \hfill \cr  y = t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

      bởi Nguyễn Tiểu Ly 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF