OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Trong mặt phẳng phức, cho ba điểm \(A, B, C\) không thẳng hàng theo thứ tự biểu diễn các số phức \({z_1},{z_2},{z_3}\). Hỏi trọng tâm của tam giác \(ABC\) biểu diễn số phức nào?

Trong mặt phẳng phức, cho ba điểm \(A, B, C\) không thẳng hàng theo thứ tự biểu diễn các số phức \({z_1},{z_2},{z_3}\). Hỏi trọng tâm của tam giác \(ABC\) biểu diễn số phức nào?

  bởi Lê Tấn Vũ 07/05/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Giả sử z1=a1+b1 i => A(a1;b1)

    z2=a2+b2 i=>B(a2;b2)

    z3=a3+b3 i=>C(a3;b3)

    Suy ra trọng tâm G của tam giác ABC có tọa độ \(\left\{ \begin{array}{l}{x_G} = \dfrac{{{a_1} + {a_2} + {a_3}}}{3}\\{y_G} = \dfrac{{{b_1} + {b_2} + {b_3}}}{3}\end{array} \right.\)

    Lại có \(\dfrac{1}{3}\left( {{z_1} + {z_2} + {z_3}} \right)\) \( = \dfrac{1}{3}\left( {{a_1} + {b_1}i + {a_2} + {b_2}i + {a_3} + {b_3}i} \right)\) \( = \dfrac{1}{3}\left[ {\left( {{a_1} + {a_2} + {a_3}} \right) + \left( {{b_1} + {b_2} + {b_3}} \right)i} \right]\)

    \( = \dfrac{{{a_1} + {a_2} + {a_3}}}{3} + \dfrac{{{b_1} + {b_2} + {b_3}}}{3}i\)

    Do đó điểm \(G\) biểu diễn số phức \(\dfrac{1}{3}\left( {{z_1} + {z_2} + {z_3}} \right)\)

      bởi na na 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF