OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong không gian Oxyz, có hai điểm \(A\left( {2;2; - 1} \right),\) \(B\left( { - 4;2; - 9} \right)\). Phương trình mặt cầu có đường kính AB là:

A. \({\left( {x + 3} \right)^2} + {y^2} + {\left( {z + 4} \right)^2} = 5\)

B. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 25\)

C. \({\left( {x + 2} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 10} \right)^2} = 25\)

D. \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 5\)

  bởi thi trang 09/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có \(A\left( {2;2; - 1} \right),B\left( { - 4;2; - 9} \right)\) nên trung điểm của đoạn thẳng AB là \(I\left( { - 1;2; - 5} \right).\) 

    Mặt cầu đường kính AB có bán kính \(R = IA = \sqrt {{{\left( { - 3} \right)}^2} + {0^2} + {{\left( { - 4} \right)}^2}}  = 5.\)

    Mặt cầu tâm \(I\left( { - 1;2; - 5} \right)\) và có bán kính \(R = 5\) có phương trình là

    \({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 5} \right)^2} = 25\)

    Chọn B.

      bởi Đào Thị Nhàn 09/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF