OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Tìm tọa độ tâm và bán kính của đường tròn đó.

Trong không gian Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y + 2z - 19 = 0 và mặt phẳng (P): x - 2y + 2z - 12 = 0. Tìm tọa độ tâm và bán kính của đường tròn đó.

  bởi Nhat nheo 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi d là đường thẳng qua I và vuông góc với (P).

    Phương trình của d là \(\left\{ \begin{array}{l}x = 1 + t\\y =  - 2 - 2t\\z =  - 1 + 2t\end{array} \right.\)

    Tâm của (C) là điểm H = d ∩ (P).

    Để tìm H ta thay phương trình của d vào phương trình của (P).

    Ta có: 1 + t - 2(-2 - 2t) + 2(-1 + 2t) - 12 = 0

    Suy ra t = 1, do đó H = (2; -4; 1).

    Bán kính của (C) bằng \(\sqrt {{R^2} - I{H^2}}  = \sqrt {25 - 9}  = 4\).

      bởi Truc Ly 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF