OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Trong các mặt cầu tiếp xúc với hai đường thẳng sau \({\Delta _1}:\left\{ \begin{array}{l}x = t\\y = 2 - t\\z = - 4 + 2t\end{array} \right.,\;{\Delta _2}:\left\{ \begin{array}{l}x = - 8 + 2t\\y = 6 + t\\z = 10 - t\end{array} \right.;\) phương trình mặt cầu có bán kính nhỏ nhất là

  bởi Nguyễn Phương Khanh 28/04/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Nhận xét: Mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng nếu nó có tâm là trung điểm của đoạn vuông góc chung. Từ đó ta tìm đoạn vuông góc chung và suy ra tâm, bán kính mặt cầu.

    \({\Delta _1}\) có VTCP \(\overrightarrow {{u_1}}  = \left( {1; - 1;2} \right)\) và \({\Delta _2}\) có VTCP \(\overrightarrow {{u_2}}  = \left( {2;1; - 1} \right)\).

    Gọi \(M\left( {t;2 - t; - 4 + 2t} \right),\,\,N\left( { - 8 + 2t';6 + t';10 - t'} \right)\) lần lượt là hai điểm thuộc \({\Delta _1},\,\,{\Delta _2}\) sao cho \(MN\) là đoạn vuông góc chung.

    \( \Rightarrow \overrightarrow {MN}  = \left( { - 8 + 2t' - t;4 + t' + t;14 - t' - 2t} \right)\)

    \(MN\) là đoạn vuông góc chung \( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_1}}  = 0\\\overrightarrow {MN} .\overrightarrow {{u_2}}  = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6t + t' = 16\\t + 6t' = 26\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 2\\t' = 4\end{array} \right.\).

    Suy ra \(M\left( {2;0;0} \right),N\left( {0;10;6} \right) \Rightarrow I\left( {1;5;3} \right)\) là trung điểm của \(MN\) và cũng là tâm mặt cầu cần tìm.

    Bán kính mặt cầu \(R = IM = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {0 - 5} \right)}^2} + {{\left( {0 - 3} \right)}^2}}  = \sqrt {35} \).

    Vậy phương trình mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y - 5} \right)^2} + {\left( {z - 3} \right)^2} = 35\).

      bởi Hồng Hạnh 29/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF