OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tính thể tích của vật thể \(T\) nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \((0 \le x \le \pi )\) là một hình vuông cạnh là \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

Tính thể tích của vật thể \(T\) nằm giữa hai mặt phẳng \(x = 0\) và \(x = \pi \), biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với trục \(Ox\) tại điểm có hoành độ \(x\) \((0 \le x \le \pi )\) là một hình vuông cạnh là \(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} \).

  bởi Tieu Giao 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Diện tích thiết diện hình vuông:

    \(\eqalign{
    & S(x) = {(2\sqrt {{\mathop{\rm s}\nolimits} {\rm{inx}}} )^2} = 4\sin x \cr 
    & V = \int\limits_0^\pi {S(x)dx} = \int\limits_0^\pi {4\sin xdx }\cr &= - 4\cos x\mathop |\nolimits_0^\pi = 8 \cr} \)

      bởi Quế Anh 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF