OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.

Một con cá hồi bơi ngược dòng để vượt một khoảng cách là \(300km\). Vận tốc dòng nước là \(6 km/h\). Nếu vận tốc bơi của con cá khi nước đứng yên là \(v (km/h)\) thì năng lượng tiêu hao của con cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c{v^3}t\), trong đó \(c\) là một hằng số, \(E\) được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất.

  bởi Hương Tràm 01/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Vận tốc của cá hồi khi bơi ngược là \(v – 6 (km/h)\).

    Thời gian cá bơi để vượt khoảng cách \(300 km\) là: \(t = {{300} \over {v- 6}}\,\,\left( h \right)\)

    Năng lượng tiêu hao của cá để vượt khoảng cách đó là: \(E\left( v \right) = c{v^3}.{{300} \over {v - 6}} = 300c.{{{v^3}} \over {v - 6}}\) (jun) với \(v>6\).

    Đạo hàm \(E'\left( v \right) = 300c.{{3{v^2}\left( {v - 6} \right) - {v^3}} \over {{{\left( {v - 6} \right)}^2}}}\) \( = 300c.{{2{v^3} - 18v} \over {{{\left( {v - 6} \right)}^2}}} = 600c.{{{v^2}\left( {v - 9} \right)} \over {{{\left( {v - 6} \right)}^2}}}\)

    \(E'\left( v \right) = 0 \Leftrightarrow \left[ \begin{array}{l}
    v = 0 \notin \left( {6; + \infty } \right)\\
    v = 9 \in \left( {6; + \infty } \right)
    \end{array} \right.\)

    \(E\left( 9 \right) = 72900c\)

    Bảng biến thiên:

    Để ít tiêu hao năng lượng nhất, cá phải bơi với vận tốc ( khi nước đứng yên) là \(9 (km/h)\).

      bởi Lê Nhật Minh 02/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF