OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm toạ độ của điểm M thuộc đường thẳng (d) sao cho khoảng cách từ điểm M đến mặt phẳng (P) bằng độ dài đoạn MA

Em sẽ rất biết ơn ai giải giúp em bài này!

Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-3;-1;2), đường thẳng d\(\left\{\begin{matrix} x=-3\\ y=-6+5t\\ z=2-t \end{matrix}\right.\) và mặt phẳng (P) x + 2y - 2z + 4 = 0. Viết phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc với mặt phẳng (P). Tìm toạ độ của điểm M thuộc đường thẳng (d) sao cho khoảng cách từ điểm M đến mặt phẳng (P) bằng độ dài đoạn MA.

  bởi Bánh Mì 07/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • VTCP (d): \(\vec{u }\) = (0;5; 1); VTPT (P): \(\vec{n }\) = (1;2; 2)
    VTPT (Q): [\(\vec{u }\); \(\vec{n }\)] =- (8;1;5)
    PT (Q):\(8( x + 3 ) + y + 6 + 5 (z - 2) = 0\Leftrightarrow 8x + y +5z + 20 =0\)
    Ta có M \(\in d\Rightarrow M\) (-3; - 6 + 5t;2 - t)
    \(d_{(M,(P))}=MA\Leftrightarrow \frac{\left | (-3)+2(-6+5t)-2(2-t)+4 \right |}{\sqrt{1+4+4} }=\sqrt{0+(5t-5)^2+t^2}\)
    \(\Leftrightarrow t=0,t=1\Rightarrow M(-3;-6;2), (-3;-1;1)\)

      bởi Nguyễn Lệ Diễm 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF