RANDOM
AMBIENT
Banner-Video
VIDEO

Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}-(\frac{x}{x^2+1}+\frac{y}{y^2+1})\)

Cho x, y là các số thực dương thỏa mãn \(x + y \leq 1\). Tìm giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}-(\frac{x}{x^2+1}+\frac{y}{y^2+1})\)

  bởi Phạm Phú Lộc Nữ 07/02/2017
ADSENSE
QUẢNG CÁO

Câu trả lời (2)

  • + Gọi  \(M = \sqrt{4x^2+\frac{1}{x^2}}+ \sqrt{4y^2+\frac{1}{y^2}}\)
    Ta có:  \(M \geq \frac{1}{\sqrt{5}}(2x+\frac{2}{x})+\frac{1}{\sqrt{5}}(2y+\frac{2}{y})=\frac{2}{\sqrt{5}}(x+y+\frac{1}{x}+\frac{1}{y})\) (Theo Cauchy – Schwarz)
    \(\frac{4}{\sqrt{5}}(\sqrt{xy}+\frac{1}{\sqrt{xy}})=\frac{4}{\sqrt{5}}(4\sqrt{xy}+\frac{1}{\sqrt{xy}}-\sqrt{xy})\) (The BĐT AM –GM)
    \(\geq \frac{4}{\sqrt{5}}\left ( 2\sqrt{4\sqrt{xy\frac{1}{xy}}}-\frac{3}{2} \right )=2\sqrt{5}\)  (do giả thiết)
    Suy ra \(M\geq 2\sqrt{5}\)    (1)
    + Gọi \(N = \frac{x}{x^2+1}+\frac{y}{y^2+1}\)
    Ta có: \(N = \frac{x}{(x^2+1)+\frac{3}{4}}+\frac{y}{(y^2+\frac{1}{4})+\frac{3}{4}}\leq \frac{x}{x+\frac{3}{4}}+\frac{y}{y+\frac{3}{4}}\)
    \(=\frac{4x}{4x+3}+\frac{4y}{4y+3}\)
    Hơn nữa: \(=\frac{4x}{4x+3}+\frac{4y}{4y+3}=2-3\left ( \frac{1}{4x+3}+\frac{1}{4y+3} \right )\leq 2-3\frac{4}{4x+4y+6}\)
     \(= 2-3.\frac{4}{10}=\frac{4}{5}\)
    Do đó \(-N\geq -\frac{4}{5}\) (2)
    Từ (1) và (2) suy ra \(P\geq 2\sqrt{5}-\frac{4}{5}\)
    Khi \(x=y=\frac{1}{2}\) thì \(P=2\sqrt{5}-\frac{4}{5}\). Vậy Min \(P=2\sqrt{5}-\frac{4}{5}\)

      bởi Lê Tấn Thanh 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy

 

 
 

Các câu hỏi có liên quan

YOMEDIA