OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{6x^2+3y^2+2z^2}{8}+\frac{3}{x+z}+\frac{3}{y+1}\)

Cho các số dương x, y, z thỏa mãn: \(x^2+y^2+z^2+2xy=\frac{3}{2}+x+y+z\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{6x^2+3y^2+2z^2}{8}+\frac{3}{x+z}+\frac{3}{y+1}\)

  bởi Trần Hoàng Mai 08/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Đặt \(t=x+y+z>0\)
    Áp dụng BĐT \(\frac{1}{2}(a+b)^2\leq (a^2+b^2)\) với a = x + y và b = z
    ta có 
    \(\frac{1}{2}(x+y+z)^2\leq (x+y)^2+z^2=x^2+y^2+z^2+2xy=\frac{3}{2}+x+y+z\)
    \(\Leftrightarrow \frac{1}{2}t^2\leq \frac{3}{2}+t\Leftrightarrow t^2-2t-3\leq 0\Leftrightarrow -1\leq t\leq 3\)
    Vậy \(0< t\leq 3\)
    Áp dụng BĐT Bu-nhia-cốp-xki có
    \((x+y+z)^2=(x+\sqrt{2}.\frac{y}{\sqrt{2}}+\sqrt{3}.\frac{z}{\sqrt{3}})^2\leq (1+2+3)(x^2+\frac{y^2}{2}+\frac{z^2}{3})\)
    \(=6x^2+3y^2+2z^2\)
    \(\Rightarrow \frac{6x^2+3y^2+2z^2}{8}\geq \frac{(x+y+z)^2}{8}=\frac{t^2}{8}\)
    Áp dụng BĐT: \(\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b},\forall a,b> 0 \Rightarrow \frac{3}{x+z}+\frac{3}{y+1}\geq \frac{12}{x+y+z+1}= \frac{12}{t+1}\)
    Vậy \(P\geq \frac{t^2}{8}+\frac{12}{t+1}\)
    Xét hàm số \(f(t)=\frac{t^2}{8}+\frac{12}{t+2},t\in (0;3]=D\)
    \(f'(t)=\frac{t}{4}-\frac{12}{(t+1)^2}=\frac{t(t+1)^2-48}{4(t+1)^2}<0,\forall t\in (0;3]\Rightarrow f(t)\) nghịch biến trên D
    Hàm số f(t) đạt GTNN tại t = 3 ⇒ \(min f(t)=f(3)=\frac{33}{8}\)
    Vậy \(P\geq \frac{33}{8}\)
    Dấu đẳng thức khi và chỉ khi đồng thời có: \(x+y=z, x+z=y+1,\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)
    \(\Leftrightarrow x=\frac{1}{2},y=1,z=\frac{3}{2}\)
    Vậy \(P_{min}=\frac{33}{8} \ khi \ x=\frac{1}{2}, y=1,z=\frac{3}{2}\)

      bởi Suong dem 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF