OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Thực hiện xét chiều biến thiên hàm số cho sau: \(f(x) = {3 \over 4}{x^4} - 2{x^3} + {3 \over 2}{x^2} - 6x + 11\)

  bởi Nguyễn Phương Khanh 13/10/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • TXĐ: \(D = \mathbb{R}\).

    \(\begin{array}{l}f'\left( x \right) = 3{x^3} - 6{x^2} + 3x - 6\\ = 3\left( {{x^3} - 2{x^2} + x - 2} \right)\\  = 3\left[ {{x^2}\left( {x - 2} \right) + \left( {x - 2} \right)} \right]\\= 3\left( {x - 2} \right)\left( {{x^2} + 1} \right)\end{array}\)

    \(f'\left( x \right) > 0 \Leftrightarrow x > 2\) nên hàm số đồng biến trên \(\left( {2; + \infty } \right)\).

    \(f'\left( x \right) < 0 \Leftrightarrow x < 2\) nên hàm số nghịch biến trên \(\left( { - \infty ;2} \right)\).

    Hàm số nghịch biến trên khoảng \(\left( { - \infty ;2} \right)\) và đồng biến trên khoảng \(\left( {2; + \infty } \right)\)

      bởi Nguyễn Thị Thanh 13/10/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF