OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy viết phương trình mặt phẳng đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\).

Hãy viết phương trình mặt phẳng đi qua điểm \(A(0 ; -1 ; 2)\) và song song với giá của các vectơ \(\overrightarrow{u}(3; 2; 1)\) và \(\overrightarrow{v}(-3; 0; 1)\). 

  bởi Nhật Mai 07/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \((Q)\) là mặt phẳng cần lập. Theo đề bài ta có: \((Q)\) song song với \(\overrightarrow u ;\;\;\overrightarrow v.\)

    Khi đó ta có VTPT của \((Q)\) là: \(\overrightarrow {{n_Q}}  = \left[ {\overrightarrow u ,\;\overrightarrow v } \right].\) \( \Rightarrow \overrightarrow {{n_Q}}  = \left( {\left| {\begin{array}{*{20}{c}}2&1\\0&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&3\\1&{ - 3}\end{array}} \right|;\;\left| {\begin{array}{*{20}{c}}3&2\\{ - 3}&0\end{array}} \right|} \right) \\= \left( {2;\; - 6;\;6} \right) = 2\left( {1; - 3;\;3} \right).\)

    Do đó ta chọn một VTPT của \((Q)\) có tọa độ \(\left( {1; - 3;\;3} \right)\)

    Phương trình mặt phẳng \((Q)\) có dạng:

    \((Q) :x - 0 - 3(y + 1) + 3(z - 2) = 0\) \( ⇔ x - 3y + 3z - 9 = 0\)

      bởi Thụy Mây 07/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF