OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy viết phương trình hình chiếu của đường thẳng d : \(\left\{ \matrix{ x = 1 + 2t \hfill \cr y = - 2 + 3t \hfill \cr z = 3 + t \hfill \cr} \right.\) trên mỗi mặt phẳng sau : \(mp(Oxy),mp(Oxz),mp(Oyz),\) \(mp\left( \alpha \right):x + y + z - 7 = 0.\)

Hãy viết phương trình hình chiếu của đường thẳng d : \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 3 + t \hfill \cr}  \right.\)  trên mỗi mặt phẳng sau : \(mp(Oxy),mp(Oxz),mp(Oyz),\)  \(mp\left( \alpha  \right):x + y + z - 7 = 0.\) 

  bởi Ngoc Han 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Phương trình hình chiếu vuông góc của đường thẳng d trên mặt phẳng tọa độ (Oxy) là

    \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 0. \hfill \cr}  \right.\)

    \( * \) Phương trình hình chiếu vuông góc của đường thẳng d trên mp(Oxz) là

    \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y = 0 \hfill \cr  z = 3 + t. \hfill \cr}  \right.\)

    \( * \) Phương trình hình chiếu vuông góc của đường thẳng d trên mp(Oyz) là

    \(\left\{ \matrix{  x = 0 \hfill \cr  y =  - 2 + 3t \hfill \cr  z = 3 + t. \hfill \cr}  \right.\)

    \( * \) Hình chiếu vuông góc của đường thẳng d trên \(mp\left( \alpha  \right)\) là giao tuyến của mặt phẳng \(\left( \alpha  \right)\) với mặt phẳng \(\left( \beta  \right)\), trong đó \(\left( \beta  \right)\) là mặt phẳng chứa đường thẳng d và vuông góc với \(\left( \alpha  \right)\).

    Vectơ chỉ phương của d là \(\overrightarrow {{u_d}}  = (2;3;1),\) vec tơ pháp tuyến của \(\left( \alpha  \right)\) là \(\overrightarrow {{n_\alpha }}  = (1;1;1).\) Vậy vec tơ pháp tuyến của \(\left( \beta  \right)\) là :

    \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow {{n_\alpha }} } \right] = \left( {\left| \matrix{  3 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  1 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  1 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  2 \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  2 \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  3 \hfill \cr  1 \hfill \cr}  \right|} \right) \)

          \(= (2; - 1; - 1).\)

    Điểm \({M_0}\left( {1; - 2;3} \right)\) thuộc d và cũng thuộc \((\beta)\), do đó phương trình mặt phẳng \((\beta)\) là:

    \(\eqalign{
    & 2\left( {x - 1} \right) - 1\left( {y + 2} \right) - 1\left( {z - 3} \right) = 0 \cr 
    & \Leftrightarrow 2x - y - z - 1 = 0 \cr} \)

    Vậy hình chiếu của d trên \((\alpha)\) là giao tuyến của hai mặt phẳng \((\beta)\) và \((\alpha)\) có phương trình lần lượt là: \(x+y+z-7=0\) và \(2x-y-z-1=0\).

    Suy ra phương trình tham số của d là:

    \(\left\{ \matrix{
    x = {8 \over 3} \hfill \cr 
    y = {{13} \over 3} - t \hfill \cr 
    z = t \hfill \cr} \right.\)

      bởi Nhat nheo 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF