OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hãy chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn.

Hãy chứng minh rằng một đa diện mà mỗi đỉnh của nó đều là đỉnh chung của số lẻ mặt thì tổng số các đỉnh của nó là một số chẵn. 

  bởi Hoa Hong 05/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Giả sử đa diện \((H)\) có các đỉnh là \(A_1, … A_d\), gọi \(m_1, … m_d\) lần lượt là số các mặt của \((H)\) nhận chúng là đỉnh chung, ở đó \(m_1, … m_d\) là những số lẻ.

    Như vậy mỗi đỉnh \(A_k\) có \(m_k\) cạnh đi qua.

    Ta có: đỉnh \(A_1\) có \(m_1\) cạnh đi qua.

    đỉnh \(A_2\) có \(m_2\) cạnh đi qua.

    ...

    đỉnh \(A_d\) có \(m_d\) cạnh đi qua.

    Do đó số các cạnh (có thể trùng nhau) của đa diện là \(m_1+m_2+...+m_d\).

    Tuy nhiên, do mỗi cạnh là cạnh chung của đúng hai mặt nên số cạnh ở trên được đếm hai lần.

    Vậy số cạnh thực tế của \((H)\) bằng

    \(c = {1 \over 2}({m_1} + {m_2} + ... + {m_d})\)      

    Vì \(c\) là số nguyên, \(m_1, … m_d\) là những số lẻ nên \(d\) phải là số chẵn.

      bởi truc lam 05/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF