OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Hàm số sau \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\). Hàm số \(y = f\left( x \right)\) có tất cả bao nhiêu điểm cực tiểu?

A. \(1\)                 

B. \(2\)               

C. \(3\)             

D. \(0\)   

  bởi Anh Nguyễn 07/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có:    \(f'\left( x \right) = \left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\); \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\\x = 3\end{array} \right.\)

    BBT của hàm số đã cho như sau:

    Từ BBT ta thấy hàm số đã cho có 1 điểm cực đại là \(x = 2\) và 2 điểm cực tiểu là \(x = 1\) và \(x = 3\)

    Chọn B

      bởi Hong Van 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF