OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Có hình chóp đều \(S.ABC\) có cạnh đáy bằng \(a,\) góc giữa mặt bên với mặt đáy bằng \(60^\circ .\) Tính theo \(a\) thể tích \(V\) của khối chóp \(S.ABC.\)

A. \(V = \dfrac{{{a^3}\sqrt 3 }}{{12}}.\)

B. \(V = \dfrac{{{a^3}\sqrt 3 }}{8}.\)

C. \(V = \dfrac{{{a^3}}}{8}.\)

D. \(V = \dfrac{{{a^3}\sqrt 3 }}{{24}}.\)

  bởi Thiên Mai 08/06/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi \(H\) là trọng tâm tam giác \(ABC\) và \(D\) là trung điểm cạnh \(BC\)

    Suy ra \(SH \bot \left( {ABC} \right)\)

    Ta có: \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\AD \bot BC\\SD \bot BC\end{array} \right.\)

    Suy ra góc giữa mặt bên \(\left( {SBC} \right)\) và đáy là \(\widehat {SDA} = {60^0}\)

    Ta có \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow DH = \dfrac{1}{3}AD = \dfrac{1}{3}\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{6}\)

    Xét tam giác \(SHD\) vuông tại \(H\) có \(SH = HD.\tan \widehat {SDH} = \dfrac{{a\sqrt 3 }}{6}.\tan {60^0} = \dfrac{a}{2}\) 

    Thể tích khối chóp là \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\)

    Chọn D

      bởi Bánh Mì 08/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF