OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Chứng minh rằng các tiếp tuyến của (C) tại các điểm B và D có hệ số góc bằng nhau

Cho hàm số: \(y=-x^{3}+3x^{2}+2\). Gọi Δ là đường thẳng đi qua A (1; 4) có hệ số góc k. Tìm giá trị của k để đường thẳng Δ cắt đồ thị (C) tại ba điểm phân biệt A, B, D. Chứng minh rằng các tiếp tuyến của (C) tại các điểm B và D có hệ số góc bằng nhau.

  bởi Trần Phương Khanh 07/02/2017
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (3)

  • Phương trình đường thẳng Δ: y = k (x – 1) + 4 Δ cắt (C) tại 3 điểm phân biệt khi và chỉ khi phương trình sau có 3 nghiệm phân biệt.

    \(-x^{3}+3x^{2}+2=k(x-1)+4\)

    \(\Leftrightarrow x^{3}-3x^{2}+k(x-1)+2=0\) (1)

    \(\Leftrightarrow (x-1)(x^{2}-2x+k-2)=0\)

    \(\Leftrightarrow \lbrack\begin{matrix}x=1 \\ x^{2}-2x+k-2=0 \end{matrix}\)

    PT (1) có 3 nghiệm phân biệt \(\Leftrightarrow PT x^{2}-2x+k-2=0\) (2) có 2 nghiệm phân biệt khác 1.

    \(\Leftrightarrow \left\{\begin{matrix}\Delta '=1-(k-2)> 0 \\ 1-2+k-2\neq 0 \end{matrix}\right.\Leftrightarrow k< 3\)

    Gọi \(x_{B};x_{D}\) là nghiệm của PT (2). Theo hệ thức Vi ét ta có: \(x_{B}+x_{D}=2\) (*)

    Ta có \(y'=-3x^{2}+6x.\) Hệ số góc của các tiếp tuyến của (C) tại các điểm B, D là:

    \(k_{B}=y'(x_{B})=-3x_{B^{2}}+6x_{B}\)

    \(k_{D}=y'(x_{D})=-3x_{D^{2}}+6x_{D}\)

    Sử dụng kết quả (*) ta có: \(k_{B}-k_{D}=-3(x_{B^{2}}-x_{D^{2}})+6(x_{B}-x_{D})\)

    \(=-3(x_{B}-x_{D})(x_{B}+x_{D}-2)=0\)

    Vậy hệ số góc của tiếp tuyến của (C) tại 2 điểm B và D bằng nhau.

      bởi bich thu 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF