OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho tứ diện ABCD có \(AB=AC=AD= a,\) \(\widehat {BAC} = {60^0},\) \(\widehat {CAD} = {60^0},\) \(\widehat {DAB} = {90^0}.\) Hãy tính khoảng cách giữa hai đường thẳng \(AC\) và \(BD\)

  bởi Nguyễn Phương Khanh 06/05/2022
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta có: \(\angle BAC = \angle CAD = {60^0},\,\,AB = AC = AD = A\)

    \( \Rightarrow \Delta ABC,\,\,\,\Delta ACD\) đều \( \Rightarrow BC = CD = a.\)

    Có \(\angle BAD = {90^0} \Rightarrow BD = \sqrt {A{B^2} + A{{\rm{D}}^2}}  = a\sqrt 2 .\)

    \( \Rightarrow \Delta BCD\) vuông cân tại \(C.\)

    Gọi \(H\) là trung điểm của \(BD.\) Kẻ \(KH \bot AC.\)

    \( \Rightarrow \left\{ \begin{array}{l}CH \bot BD\\AH \bot BD\end{array} \right. \Rightarrow BD \bot \left( {CAH} \right) \Rightarrow BD \bot KH\)

    \( \Rightarrow d\left( {AC,\,BD} \right) = KH.\)

    Xét \(\Delta AHC\) vuông tại \(H\) có đường cao \(KH\) ta có:

    \(KH = \frac{{HC.AH}}{{\sqrt {H{C^2} + H{A^2}} }} = \frac{{\frac{1}{4}B{D^2}}}{{\sqrt {\frac{1}{4}B{D^2} + \frac{1}{4}B{D^2}} }} = \frac{{\sqrt 2 }}{4}BD = \frac{{\sqrt 2 }}{4}.a\sqrt 2  = \frac{a}{2}.\)

      bởi thu phương 07/05/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF