OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho sáu điểm A(a;0;0), B(0;b;0), C(0;0;c), A’(a’;0;0), B’(0;b’;0), C’(0;0;c’) với aa’ = bb’ = cc’\( \ne 0\) ;\(a \ne a',b \ne b',c \ne c'.\) Chứng minh rằng có một mặt cầu đi qua sáu điểm nói trên.

Cho sáu điểm A(a;0;0), B(0;b;0), C(0;0;c), A’(a’;0;0), B’(0;b’;0), C’(0;0;c’) với aa’ = bb’ = cc’\( \ne 0\) ;\(a \ne a',b \ne b',c \ne c'.\) Chứng minh rằng có một mặt cầu đi qua sáu điểm nói trên.

  bởi Aser Aser 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Trước hết ta xác định tâm và tính bán kính của mặt cầu đi qua bốn điểm A, A’, B, C. Gọi I(x;y;z) là tâm của mặt cầu đó, ta có \(IA{^2} =IA{'^2} = I{B^2} = I{C^2}\)

    \(\eqalign{  &  \Rightarrow \left\{ \matrix{  {(x - a)^2} + {y^2} + {z^2} = {(x - a')^2} + {y^2} + {z^2} \hfill \cr  {(x - a)^2} + {y^2} + {z^2} = {x^2} + {(y - b)^2} + {z^2} \hfill \cr  {(x - a)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {(z - c)^2} \hfill \cr}  \right.  \cr  &  \Rightarrow \left\{ \matrix{   - 2ax + {a^2} =  - 2a'x + a{'^2} \hfill \cr   - 2ax + {a^2} =  - 2by + {b^2} \hfill \cr   - 2ax + {a^2} =  - 2cz + {c^2} \hfill \cr}  \right.  \cr  &  \cr} \)

    \( \Rightarrow x = {{a + a'} \over 2} \Rightarrow y = {{{b^2} + aa'} \over {2b}}\) và \(z = {{{c^2} + aa'} \over {2c}}\)

    Vậy \(I = \left( {{{a + a'} \over 2};{{{b^2} + aa'} \over {2b}};{{{c^2} + aa'} \over {2c}}} \right)\)

    Gọi R là bán kính mặt cầu, ta có :

    \(\eqalign{  & {R^2} = I{B^2} \cr&= {\left( {{{a + a'} \over 2}} \right)^2} + {\left( {{{aa' - {b^2}} \over {2b}}} \right)^2} + {\left( {{{{c^2} + aa'} \over {2c}}} \right)^2}.  \cr  &  \cr} \)

    Mặt khác :

    \( I{{B\,'}^2} = {\left( {{{a + a'} \over 2}} \right)^2} + {\left( {{{{b^2}{\rm{ + aa}}'} \over {2b}} - b'} \right)^2} + {\left( {{{{c^2} + aa'} \over {2c}}} \right)^2}  \)

    \( = {\left( {{{a + a'} \over 2}} \right)^2} + {\left( {{{{b^2} - aa'} \over {2b}}} \right)^2} + {\left( {{{{c^2} + aa'} \over {2c}}} \right)^2}  \)  (vì aa’ = bb’)

    \( = IB^2 = {R^2}\) 

    Tương tự \(IC\,'{^2} = I{C^2} = {R^2}.\)

    Vậy B’, C’ cũng thuộc mặt cầu nói trên.

      bởi Nhat nheo 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF