OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Cho hình chóp S.ABCD có \(S(3;3;\frac{13}{2}), A(1;2;3),B(-1;4;6),C(2;1;10), D(4;-1;7)\)

Cứu với mọi người!

Cho hình chóp S.ABCD có \(S(3;3;\frac{13}{2}), A(1;2;3),B(-1;4;6),C(2;1;10), D(4;-1;7)\)
a) CMR: ABCD là hình chữ nhật, \(SI\perp (ABCD)\) với I là giao điểm AC, BD
b) Tính VS.ABCD

  bởi Nguyễn Lê Thảo Trang 07/02/2017
ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • a)
    \(\overrightarrow{AB}=(-2;2;3)\)
    \(\overrightarrow{DC}=(-2;2;3)\)
    \(\overrightarrow{AB}=\overrightarrow{DC}, A, B, C\) 
    Vậy ABCD là hình bình hành (1)
    \(\overrightarrow{AD}=(3;-3;4)\)
    \(\overrightarrow{AB}.\overrightarrow{AD}=-6-6+12=0\Rightarrow AB\perp AD \ (2)\)
    Từ (1) (2) ta có ABCD là hình chữ nhật 
    ABCD là hình chữ nhật nên I là trung điểm AC
    \(\Rightarrow I(\frac{3}{2};\frac{3}{2};\frac{13}{2})\)
    \(\overrightarrow{SI}=(-\frac{3}{2};-\frac{3}{2};0)\)
    \(\overrightarrow{AB}.\overrightarrow{SI}=-2(-\frac{3}{2})+2(-\frac{3}{2})+3.0=0\)
    \(\Rightarrow AB\perp SI \ \ (3)\)
    \(\overrightarrow{AD}.\overrightarrow{SI}=3(-\frac{3}{2})-3(-\frac{3}{2})+4.0=0\)
    \(\Rightarrow AD\perp SI\)   (4)
    Từ (3) (4), ta có SI \(\perp\) (ABCD)
    b) 
    Cách 1:
    ABCD là hình chữ nhật nên đường thẳng ABCD = AB.AD
    \(\sqrt{(-2)^2+2^2+3^2}.\sqrt{3^2+(-3)^2+4^2}=\sqrt{17}.\sqrt{34}=17\sqrt{2}\)
    \(SI=\sqrt{\left ( -\frac{3}{2} \right )^2+\left ( -\frac{3}{2} \right )^2}= \frac{3}{2}\sqrt{2}\)
    \(V_{S.ABCD}=\frac{1}{3}SI.dt \ ABCD = \frac{1}{3}.\frac{3}{2}\sqrt{2}.17\sqrt{2}=17\)
    Cách 2:
    dt ABCD = 2 dt ABD nên
    \(V_{S.ABCD}=2.V_{SABD}=2.\frac{1}{6}\left | \left [ \overrightarrow{AB};\overrightarrow{AD} \right ].\overrightarrow{AS} \right |\)
    \(\left [ \overrightarrow{AB};\overrightarrow{AD} \right ] =\left ( \begin{vmatrix} 2 \ \ 3\\ -3 \ \ 4 \end{vmatrix}; \begin{vmatrix} 3 \ \ -2\\ 4 \ \ 3 \end{vmatrix};\begin{vmatrix} -2 \ \ 2\\ 3 \ \ -3 \end{vmatrix}\right )=(17;17;0)\)
    \(\overrightarrow{AS}=(2;1;\frac{7}{2})\)
    \(\left [ \overrightarrow{AB};\overrightarrow{AD} \right ].\overrightarrow{AS} = 17.2+17.1+0.\frac{7}{2}=51\)
    \(V_{S.ABCD}=2.\frac{1}{6}.51=17\)

      bởi Phan Quân 09/02/2017
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF