OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai hàm số: \(f(x) = - {1 \over 4}{x^2} + x + {1 \over 4}\) và \(g(x) = \sqrt {{x^2} - x + 1} \). Chứng minh rằng đồ thị (P) của hàm số f và đồ thị (C) của hàm số g tiếp xúc với nhau tại điểm A có hoành độ x = 1.

Cho hai hàm số: \(f(x) =  - {1 \over 4}{x^2} + x + {1 \over 4}\) và \(g(x) = \sqrt {{x^2} - x + 1} \). Chứng minh rằng đồ thị (P) của hàm số f và đồ thị (C) của hàm số g tiếp xúc với nhau tại điểm A có hoành độ x = 1.

  bởi thanh duy 03/06/2021
ADMICRO/lession_isads=0

Câu trả lời (1)

  • Ta có:

    \(\begin{array}{l}f'\left( x \right) =  - \frac{1}{2}x + 1\\g'\left( x \right) = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array}\)

    (P) và (C ) tiếp xúc nhau \( \Leftrightarrow \) hệ \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\) có nghiệm

    Xét hệ: \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right.\)

    \( \Leftrightarrow \left\{ \begin{array}{l} - \frac{1}{4}{x^2} + x + \frac{1}{4} = \sqrt {{x^2} - x + 1} \\ - \frac{1}{2}x + 1 = \frac{{2x - 1}}{{2\sqrt {{x^2} - x + 1} }}\end{array} \right.\)

    Thay \(x = 1\) vào hệ trên ta thấy thỏa mãn.

    Do đó hệ có nghiệm \(x = 1\).

    Vậy (P) và (C ) tiếp xúc nhau tại điểm có hoành độ \(x = 1\).

      bởi Minh Tú 03/06/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF