OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 3 + t\\y = 1 - t\\z = 2t\end{array} \right.,d':\left\{ \begin{array}{l}x = 1 + t'\\y = 2t'\\z = - 1 + t'\end{array} \right.\) và M(2; -1; 0). Chứng minh rằng d và d' chéo nhau.

Cho hai đường thẳng \(d:\left\{ \begin{array}{l}x = 3 + t\\y = 1 - t\\z = 2t\end{array} \right.,d':\left\{ \begin{array}{l}x = 1 + t'\\y = 2t'\\z =  - 1 + t'\end{array} \right.\) và M(2; -1; 0). Chứng minh rằng d và d' chéo nhau.

  bởi Thanh Thanh 25/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Ta chứng minh được d không song song với d' vì chúng có các vectơ chỉ phương không cùng phương.

    Giải hệ phương trình \(\left\{ \begin{array}{l}3 + t = 1 + t'\\1 - t = 2t'\\2t =  - 1 + t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t' = 1\\t =  - 1\\2t =  - 1 + t'\end{array} \right.\)

    ⇒ hệ phương trình vô nghiệm

    Do đó d và d' chéo nhau.

      bởi thanh hằng 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF