OPTADS360
ATNETWORK
RANDOM
ON
YOMEDIA
Banner-Video
IN_IMAGE

Cho hai điểm A(3;1;1), B(7;3;9) và \(mp\left( \alpha \right):x + y + z + 3 = 0.\) Xác định điểm M trên \(\left( \alpha \right)\) để \(\left| {\overrightarrow {MA} + \overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất.

Cho hai điểm A(3;1;1), B(7;3;9) và \(mp\left( \alpha  \right):x + y + z + 3 = 0.\) Xác định điểm M trên \(\left( \alpha  \right)\) để \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) đạt giá trị nhỏ nhất.

  bởi Dương Quá 24/05/2021
AMBIENT-ADSENSE/lession_isads=0
QUẢNG CÁO
 

Câu trả lời (1)

  • Gọi I là trung điểm của đoạn \(AB \Rightarrow I = (5;2;5).\)

    Ta có \(\overrightarrow {MA}  + \overrightarrow {MB}  = 2\overrightarrow {MI}  \Rightarrow \left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right| = 2MI.\)

    Vậy \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất \( \Leftrightarrow \) MI nhỏ nhất với I cố định và \(M \in (\alpha ) \Leftrightarrow M\) là hình chiếu vuông góc với I trên mp(\(\alpha \)).

    Toa độ của \(M(x;y;z)\) là nghiệm của hệ:

    \(\left\{ \matrix{  x = 5 + t \hfill \cr  y = 2 + t \hfill \cr  z = 5 + t \hfill \cr  x + y + z + 3 = 0 \hfill \cr}  \right. \Rightarrow t =  - 5 \Rightarrow M = (0; - 3;0).\)

    Kết luận: \(\left| {\overrightarrow {MA}  + \overrightarrow {MB} } \right|\) nhỏ nhất \( { = 2MI = 10\sqrt 3 } \) khi M= (0; -3; 0).

      bởi Trần Bảo Việt 25/05/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
 

Các câu hỏi mới

NONE
OFF