OPTADS360
ATNETWORK
ATNETWORK
YOMEDIA

Phương pháp giải bài toán tìm m để hàm số đồng biến, nghịch biến trên tập xác định

14/05/2021 941.51 KB 1311 lượt xem 1 tải về
Banner-Video
https://m.hoc247.net/docview/viewfile/1.1.114/web/?f=https://m.hoc247.net/tulieu/2021/20210514/633727646988_20210514_084841.pdf?r=7305
ADMICRO/
Banner-Video

HOC247 giới thiệu đến các em tài liệu Phương pháp giải bài toán tìm m để hàm số đồng biến, nghịch biến trên tập xác định được HOC247 biên tập và tổng hợp với phần lý thuyết và bài tập có đáp án, lời giải chi tiết giúp các em tự luyện tập. Hi vọng tài liệu này sẽ có ích cho các em, chúc các em có kết quả học tập tốt!

 

 
 

1. Phương pháp giải

- Tìm TXĐ
- Tính y’
- Hàm số  đồng biến trên \(\mathbb{R}\Leftrightarrow y'\ge 0,\forall x\in \mathbb{R}\)

(Hàm số nghịch biến trên \(\mathbb{R}\Leftrightarrow y'\le 0,\forall x\in \mathbb{R}\)

- Từ đó suy ra điều kiện của m.

Chú ý: Cho hàm số y=f(x) có đạo hàm liên tục trên D

- Hàm số đồng biến trên \(I\subset D\Leftrightarrow f'(x)\ge 0\text{,  }\forall x\in I\) và f'(x)=0 có hữu hạn nghiệm.

- Hàm số đồng biến trên \(I\subset D\Leftrightarrow f'(x)\le 0\text{,  }\forall x\in I\) và f'(x)=0 có hữu hạn nghiệm.

Ví dụ 1: Định m để hàm số \(y=\frac{mx+4}{x+m}\) luôn đồng  biến trên từng khoảng xác định

Lời giải.

Hàm số đã cho xác định \(D=\mathbb{R}\backslash \{-m\}\left( -\infty ;-m \right)\cup \left( -m;+\infty  \right)\)

Ta có: \(y'=\frac{{{m}^{2}}-4}{{{(x+m)}^{2}}}\)

Hàm số luôn đồng biến trên các khoảng \(\left( -\infty ;-m \right)\) và \(\left( -m;+\infty  \right)\)

\(\Leftrightarrow y'>0\), \(\forall x\in D\) \(\Leftrightarrow {{m}^{2}}-4>0\Rightarrow m<-2\) hoặc m>2

Vậy, với m<-2 hoặc m>2 thì hàm số luôn đồng biến trên các khoảng \(\left( -\infty ;-m \right)\) và \(\left( -m;+\infty  \right)\)

Ví dụ 2: Định m để hàm số luôn đồng  biến:

1. \(y={{x}^{3}}+3{{x}^{2}}+mx+m\)

2. \(y=m{{x}^{3}}-(2m-1){{x}^{2}}+(m-2)x-2\)

Lời giải.

1. Hàm số đã cho xác định \(D=\mathbb{R}\)

Ta có: \(y'=3{{x}^{2}}+6x+m\)

Cách 1: Hàm số luôn đồng biến trên \(\mathbb{R} \Leftrightarrow y'\ge 0,\forall x\in \mathbb{R}\), thì phải có \(\Delta '\le 0\), tức \(9-3m\le 0\) hay \(m\ge 3\)

Vậy, với \(m\ge 3\) thì hàm số  luôn đồng biến trên \(\mathbb{R}\).

Cách 2: Hàm số luôn đồng biến  trên \(\mathbb{R} \Leftrightarrow y'\ge 0,\forall x\in \mathbb{R}\), thì phải có \(m\ge -3{{x}^{2}}-6x\). Xét hàm số \(g\left( x \right)=-3{{x}^{2}}-6x\) trên \(\mathbb{R}\) và có \(g'\left( x \right)=-6x-6, g'\left( x \right)=0\Leftrightarrow x=-1\)

Bảng biến thiên:

Dựa vào bảng biến thiên, suy ra: \(m\ge g(x)\) với \(\forall x\in \mathbb{R} \Leftrightarrow m\ge 3\)

2. Hàm số đã cho xác định \(D=\mathbb{R}\)

Ta có: \(y'=3m{{x}^{2}}-2(2m-1)x+m-2\)

Hàm số luôn đồng biến trên \(\mathbb{R} \Leftrightarrow y'\ge 0,\forall x\in \mathbb{R}\), thì phải có \(\left\{ \begin{align} & \Delta '\le 0 \\ & 3m>0 \\ \end{align} \right.\), tức \(\left\{ \begin{align} & 4{{m}^{2}}-4m+1-3m(m-2)\le 0 \\ & m>0 \\ \end{align} \right.\) hay \(\left\{ \begin{align} & {{(m+1)}^{2}}\le 0 \\ & m>0 \\ \end{align} \right.\Rightarrow m>0\)

Vậy, với m>0 thì hàm số luôn đồng biến trên \(\mathbb{R}\).

2. Bài tập

Bài 1: Tìm a để hàm số \(y=\frac{1}{3}{{x}^{3}}+a{{x}^{2}}+4x+3\) đồng biến trên \(\mathbb{R}\)

Bài 2: Tìm m để các hàm số  sau luôn nghịch biến trên mỗi khoảng xác định .

1. \(y=\frac{mx+3-2m}{x+m}\)

2. \(y=\frac{-2{{x}^{2}}+\left( m+2 \right)x-3m+1}{x-1}\)

Bài 3: Tìm m để hàm số:

1. \(y=(m+2)\frac{{{x}^{3}}}{3}-(m+2){{x}^{2}}-(3m-1)x+{{m}^{2}}\) đồng biến trên \(\mathbb{R}\)

2. \(y=(m-1){{x}^{3}}-3(m-1){{x}^{2}}+3(2m-3)x+m\) nghịch biến trên \(\mathbb{R}\)

3. \(y=\frac{1}{3}\left( {{m}^{2}}-1 \right){{x}^{3}}+\left( m+1 \right){{x}^{2}}+3x\) luôn nghịch biến trên \(\mathbb{R}\)

4. \(\text{y }=mx+\frac{2}{3}{{\left( \sqrt{x-2} \right)}^{3}}+\frac{2}{3}{{\left( \sqrt{x-4} \right)}^{3}}\) đồng biến trên tập xác định của nó.

5. \(y=x+1+m\sqrt{{{x}^{2}}+1}\) đồng biến trên \(\mathbb{R}\)

Bài 4: Tìm m để hàm số: \(y=\frac{-3{{x}^{2}}+mx-2}{2x-1}\) nghịch biến trên từng khoảng xác định.

HƯỚNG DẪN GIẢI

Bài 1:

Cách 1: Hàm số đã cho đồng biến trên \(\mathbb{R} \Leftrightarrow y'\ge 0, \forall x\in \mathbb{R}\) nghĩa là ta luôn có: \(\Delta '={{a}^{2}}-4\le 0 \Leftrightarrow -2\le a\le 2\)

Cách 2: Tham khảo cách giải sau, bạn đọc đúc kết gì qua 2 lời giải

Bảng xét dấu \(\Delta '\)

+ Nếu \(- 2 < a < 2\), ta có : \(y' = 0 \Leftrightarrow x = - 2,y' > 0,x \ne - 2\). Hàm số y đồng biến trên mỗi nửa khoảng \(\left( { - \infty ; - 2} \right]\)\(\left[ { - 2; + \infty } \right)\) nên hàm số đồng biến trên R.

+ Tương tự nếu a=-2. Hàm số y đồng biến trên \(\mathbb{R}\)

+ Nếu a<-2 hoặc a>2 thì y'=0 có hai nghiệm phân biệt \({{x}_{1}},{{x}_{2}}\). Giả sử \({{x}_{1}}<{{x}_{2}}\). Khi đó hàm số nghịch biến trên khoảng \(\left( {{x}_{1}};{{x}_{2}} \right)\),đồng biến trên mỗi khoảng \(\left( -\infty ;{{x}_{1}} \right)\) và \(\left( {{x}_{2}};+\infty  \right)\). Do đó a<-2 hoặc a>2 không thoả mãn yêu cầu bài toán .

Bài 2:

1. \(- 3 < m < 1\)

2. + \(m\le \frac{1}{2}\Rightarrow y'<0,x\ne 1\), hàm số nghịch biến trên mỗi khoảng \(\left( -\infty ;1 \right), \left( 1;+\infty  \right)\)

+ \(m>\frac{1}{2}\) khi đó phương trình y'=0 có hai nghiệm \({{x}_{1}}<1<{{x}_{2}}\Rightarrow\) hàm số đồng biến trên mỗi khoảng \(\left( {{x}_{1}};1 \right)\) và \(\left( 1;{{x}_{2}} \right)\), trường hợp này không thỏa . 

Bài 3:

1. Vì đạo hàm không thể triệt tiêu tại vô hạn điểm nên

Hàm số đồng biến trên \(\mathbb{R}\Leftrightarrow y'\ge 0\text{ }\forall x\in \mathbb{R}\)

\(\Leftrightarrow (m+2){{x}^{2}}-2(m+2)x-3m+1\ge 0\text{ }\forall x\in \mathbb{R}\) (1)

TH 1: Nếu m=-2 khi đó (1) luôn đúng với mọi x \(\Rightarrow m=-2\) thỏa bài toán

TH 2: Nếu \(m\ne -2\) khi đó (1) \(\Leftrightarrow \left\{ \begin{align} & a=m+2>0 \\ & \Delta '=(m+2)(4m+1)\le 0 \\ \end{align} \right.\)\( \Leftrightarrow - 2 < m \le - \frac{1}{4}\)

2. \(m=1\Rightarrow y'=-3<0\text{  }\forall x\in \mathbb{R}\) hàm số nghịch biến trên \(\mathbb{R}\)

\(m\ne 1\)

Hàm số nghịch biến trên \(\mathbb{R}\Leftrightarrow \left\{ \begin{align} & m-1<0 \\ & \Delta ={{(m-1)}^{2}}-(2m-3)(m-1)\le 0 \\ \end{align} \right.\)

\(\Leftrightarrow \left\{ \begin{align} & m<1 \\ & -m+2\ge 0 \\ \end{align} \right.\Leftrightarrow m<1\).  

Vậy \(m\le 1\)

3. Hàm số y đồng  biến trên \(\mathbb{R}\) khi và chỉ khi \(\Leftrightarrow y'\ge 0,\forall x\in \mathbb{R}\)

+ Xét \({{m}^{2}}-1=0\Leftrightarrow m=\pm 1\)

\(\centerdot \mathsf{ m}=1\Rightarrow y'=4x+3\mathsf{ }\Rightarrow y'\ge 0\Leftrightarrow x\ge -\frac{3}{4}\Rightarrow m=1\) không thoả yêu cầu

\(\centerdot \mathsf{ }m=1\Rightarrow y'=3>0\mathsf{ }\forall x\in \mathbb{R}\mathsf{ }\Rightarrow m=-1\) thoả mãn yêu cầu bài toán.

+ Xét \({{m}^{2}}-1\ne 0\Leftrightarrow m\ne \pm 1\)

+ Nếu \(m<-1\vee m>2\) thì y'>0 với mọi \(x\in \mathbb{R}\). Hàm số y đồng biến trên \(\mathbb{R}\)

+ Nếu m=2 thì \(y'=3{{\left( x+1 \right)}^{2}}\) , ta có : \(y'=0\Leftrightarrow x=-1,y'>0,x\ne -1\). Hàm số y đồng  biến trên mỗi nửa khoảng \(\left( -\infty ;-1 \right]\) và \(\left[ -1;+\infty  \right)\) nên hàm số y đồng  biến trên \(\mathbb{R}\).

+ Nếu \(- 1 < m < 2,m \ne 1\) thì \(y' = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\). Giả sử \({x_1} < {x_2}\). Khi đó hàm số nghịch biến trên khoảng \(\left( {{x_1};{x_2}} \right)\),đồng biến trên mỗi khoảng \(\left( { - \infty ;{x_1}} \right)\)\(\left( {{x_2}; + \infty } \right)\). Do đó \( - 1 < m < 2,m \ne 1\) không thoả mãn yêu cầu bài toán .

Do đó hàm số y đồng biến trên R khi và chỉ khi \(m < - 1 \vee m \ge 2\).

4. Hàm số đồng biến trên D \(\Leftrightarrow \forall x \in D\,,\,y' \ge 0\)  \(\Leftrightarrow \forall x \in D\,,\sqrt {x - 2} + \sqrt {x - 4} \ge - m\)(1)

Xét hàm \(f(x)=\sqrt{x-2}+\sqrt{x-4}\).Khi đó (1) \(\Leftrightarrow \forall x\in D\,,\,f(x)\ge -m\).

Lập bảng biến thiên của f(x) trên \([4;+\infty )\). \(f'(x)=\frac{1}{\sqrt{x-2}}+\frac{1}{\sqrt{x-4}}>0\,\,\forall x\in (4;+\infty )\).

Lại có f(x)  liên tục trên \([4;+\infty )\),do đó f(x) đồng biến trên [\(4;+\infty )\),suy ra  \(\underset{x\in [4;+\infty )}{\mathop{\min }}\,f(x)=f(4)=\sqrt{2}\). Vậy hàm số đã cho đồng biến trên D \(\Leftrightarrow m\ge -\sqrt{2}\)

5. \(\forall x\in \mathbb{R}\,,y'\ge 0\Leftrightarrow 1-\left| m \right|\ge 0\Leftrightarrow -1\le m\le 1.\)

Bài 4:  Hàm số nghịch biến trên từng khoảng xác định khi và chỉ khi \(y'\le 0,\mathsf{ }\forall x\ne \frac{1}{2}\) tức \(-6{{x}^{2}}+6x+4-m\le 0\), \(\forall x\ne \frac{1}{2}\Rightarrow  m\ge \frac{11}{2}\)

 

Trên đây là toàn bộ nội dung Phương pháp giải bài toán tìm m để hàm số đồng biến, nghịch biến trên tập xác định. Để xem thêm nhiều tài liệu tham khảo hữu ích khác các em chọn chức năng xem online hoặc đăng nhập vào trang hoc247.net để tải tài liệu về máy tính.

Hy vọng tài liệu này sẽ giúp các em học sinh ôn tập tốt và đạt thành tích cao trong học tập.

Các em quan tâm có thể tham khảo thêm các tài liệu cùng chuyên mục:

Chúc các em học tập tốt!

 

 

 

 

VIDEO
YOMEDIA
Trắc nghiệm hay với App HOC247
YOMEDIA
NONE
OFF