OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 20 trang 102 SBT Toán 9 Tập 2

Bài tập 20 tr 102 sách BT Toán lớp 9 Tập 2

Để giúp xe lửa chuyển từ một đường ray từ hướng này sang một đường ray theo hướng khác, người ta làm xen giữa một đoạn đường ray hình vòng cung (hình \(1\)). Biết chiều rộng của đường ray là \(AB \approx 1,1m\), đoạn \(BC \approx 28,4m\). Hãy tính bán kính \(OA = R\) của đoạn đường ray hình vòng cung. 

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức: 

+) Nếu một đường thẳng là tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm.

+) Đường kính vuông góc với một dây thì đi qua trung điểm của dây ấy.

+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.

Lời giải chi tiết

Ta xem hai đoạn đường ray thẳng là tiếp tuyến của hai đoạn đường ray vòng cung.

Điểm \(B\) cố định nằm trong đường tròn có cung \(\overparen{AC}\).

Đường thẳng \(OB\) cắt đường tròn đó tại \(A\) và \(A’.\)

\(A\) cố định và \(A’\) cố định

\(B\) là tiếp điểm cung nhỏ trong nên \(BC\) là tiếp tuyến của đường tròn \((O; OB)\)

\( \Rightarrow BC \bot OB\). Kéo dài \(BC\) cắt đường tròn \((O; OA)\) tại \(C’\)

\( \Rightarrow BC = BC'\) (đường kính vuông góc dây cung)

Xét \(∆BAC\) và \(∆BA'C:\)

+) \(\widehat {ABC} = \widehat {C'BA'}\) (đối đỉnh)

+) \(\widehat {ACB} = \widehat {C'A'B}\) (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AC'}\))

Suy ra: \(∆BAC\) đồng dạng \(∆BC'A' \;\;(g.g)\)

\( \Rightarrow \displaystyle {{BC'} \over {AB}} = {{BA'} \over {BC}}\)

\( \Rightarrow BC.BC' = AB.BA'\) mà \(BC = BC’; BA’ = 2R – AB\)

Suy ra: \(B{C^2} = AB\left( {2R - AB} \right)\)

\({\left( {28,4} \right)^2} \approx 1,1.\left( {2R - 1,1} \right)\)

\( \Rightarrow 2,2R \approx 806,56 + 1,21\)

\(R \approx 807,77:2,2 = 367,2\) \((m).\)

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 20 trang 102 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • The Hao Ly

    Theo dõi (0) 0 Trả lời
  • Văn Huy

    Theo dõi (0) 5 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Mai Tram

    Cho tam giác ABC nhọn nội tiếp đường tròn tâm O, đường cao AM, CN.  

    a) chứng minh tứ giác ANMC nội tiếp. Xác định tâm của đường tròn.

    b) chứng minh góc MAC = góc MNC

    c) Kẻ tia tiếp tuyến Bx của đường tròn ngoại tiếp tứ giác ANMC. Chứng minh Bx // MN

    Theo dõi (2) 1 Trả lời
NONE
OFF