OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 21 trang 102 SBT Toán 9 Tập 2

Bài tập 21 tr 102 sách BT Toán lớp 9 Tập 2

Cho tam giác \(ABC\) nội tiếp trong đường tròn tâm \(O,\) biết \(\widehat A = {32^0}\), \(\widehat B = {84^0}\). Lấy các điểm \(D, E, F\) thuộc đường tròn tâm \(O\) sao cho \(AD = AB,\) \(BE = BC,\) \(CF = CA.\) Hãy tính các góc của tam giác \(DEF.\)

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

Hướng dẫn giải

Ta sử dụng kiến thức:

+) Trong một đường tròn, số đo góc nội tiếp bằng nửa số đo của cung bị chắn.

Lời giải chi tiết

Xét đường tròn \((O)\) có:

\(\widehat A =\displaystyle {1 \over 2} sđ \overparen{BC}\) (tính chất góc nội tiếp)

\( \Rightarrow  sđ \overparen{BC}\) \( = 2\widehat A = {2.32^o} = {64^o}\)

Ta có: \(BC = BE \;\;(gt)\)

\( \Rightarrow sđ \overparen{BC}\)\( = sđ \overparen{BE}= 64^o\)

Mà \(\widehat B = \displaystyle {1 \over 2} sđ \overparen{AC}\) (tính chất góc nội tiếp)

\( \Rightarrow \) sđ \(\overparen{AC}\) \( = 2\widehat B = {2.84^o} = {168^o}\)

Lại có: \(AC = CF \;\;(gt)\)

\( \Rightarrow sđ \overparen{CF}\) \(=  sđ \overparen{AC}= 168^o\)

\( sđ \overparen{AC} +  sđ \overparen{AF} +  sđ \overparen{CF}\)\( = 360^o\)

\( \Rightarrow  sđ \overparen{AF}\) \( = {360^o} -  sđ \overparen{AC} -  sđ \overparen{CF}\)\( = 360^o – 168^o. 2 = 24^o\)

Trong \(∆ABC\) ta có: \(\widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat {ACB} = {180^0} - \left( {\widehat A + \widehat B} \right)\)

\( = {180^0} - \left( {{{32}^o} + {{84}^o}} \right) = {64^o}\)

Mà \( \widehat {ACB} = \displaystyle {1 \over 2} sđ \overparen{AB}\) (tính chất góc nội tiếp) 

\( \Rightarrow  sđ \overparen{AB} = 2\widehat {ACB} = {2.64^o} = {128^o}\)

Lại có \(AD = AB\;\; (gt)\)

\( \Rightarrow  sđ \overparen{AD} =  sđ \overparen{AB} = 128^o\)

Ta có: \(\widehat {FED} = \displaystyle {1 \over 2} sđ \overparen{DF}\) \( =\displaystyle {1 \over 2} ( sđ \overparen{AD} +  sđ \overparen{AF}\))

\(= \displaystyle{1 \over 2}.\left( {{{128}^o} + {{24}^o}} \right) = {76^o}\)

\(\widehat {EDF} = \displaystyle{1 \over 2} sđ \overparen{EF}\) \(=\displaystyle {1 \over 2} ( sđ \overparen{AB} -  sđ \overparen{AF} -  sđ \overparen{BE})\)

\(= \displaystyle{1 \over 2}.\left( {{{128}^o} - {{24}^o} - {{64}^o}} \right) = {20^o}\)

\(\widehat {DFE} = {180^o} - \left( {\widehat {FED} + \widehat {EDF}} \right)\)

\(= {180^0} - \left( {{{76}^o} + {{20}^o}} \right) = {84^o}\).

-- Mod Toán 9 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 21 trang 102 SBT Toán 9 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

  • thanh hằng

    Cho tam giác ABC nội tiếp đường tròn (O), hai đường cao BD và CE cắt nhau tại H. Vẽ đường kính AF.

    a) Tứ giác BFCH là hình gì?

    b) Gọi M là trung điểm của BC. Chứng minh rằng ba điểm H,M,F thẳng hàng

    c) Chứng minh rằng Om=1/2AH

    Theo dõi (0) 1 Trả lời
  • Nguyễn Quang Thanh Tú
    Bài 22 (Sách bài tập - tập 2 - trang 102)

    Vẽ một tam giác vuông biết cạnh huyền là 4cm và đường cao ứng với cạnh huyền là 1,5cm ?

    Theo dõi (0) 1 Trả lời
  • VIDEO
    YOMEDIA
    Trắc nghiệm hay với App HOC247
    YOMEDIA
    Hoa Lan
    Bài 21 (SGK trang 76)

    Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại A và B. Vẽ đường thẳng qua A cắt (O) tại M và cắt (O') tại N (A nằm giữa M và N). Hỏi MBN là tam giác gì? Tại sao?

    Theo dõi (0) 1 Trả lời
NONE
OFF