Bài tập 3.2 tr 103 sách BT Toán lớp 9 Tập 2
Cho nửa đường tròn đường kính \(AB,\) tâm \(O.\) Đường tròn tâm \(A\) bán kính \(AO\) cắt nửa đường tròn đã cho tại \(C.\) Đường tròn tâm \(B\) bán kính \(BO\) cắt nửa đường tròn đã cho tại \(D.\) Đường thẳng qua \(O\) và song song với \(AD\) cắt nửa đường tròn đã cho tại \(E.\)
\(a)\) \(\widehat {ADC}\) và \(\widehat {ABC}\) có bằng nhau không\(?\) Vì sao\(?\)
\(b)\) Chứng minh \(CD\) song song với \(AB.\)
\(c)\) Chứng minh \(AD\) vuông góc với \(OC\)
\(d)\) Tính số đo của \(\widehat {DAO}\).
\(e)\) So sánh hai cung \(BE\) và \(CD.\)
Hướng dẫn giải chi tiết
Hướng dẫn giải
Ta sử dụng kiến thức:
+) Trong một đường tròn, các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
+) Trong một đường tròn, góc nội tiếp chắn nửa đường tròn là góc vuông.
+) Tứ giác có bốn cạnh bằng nhau là hình thoi.
+) Trong hình thoi, hai đường chéo vuông góc.
+) Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
Lời giải chi tiết
\(a)\) Trong đường tròn \((O)\) ta có:
\(\widehat {ADC} = \widehat {ABC}\) (\(2\) góc nội tiếp cùng chắn cung \(\overparen{AC}\))
\(b)\) \(∆ACB\) nội tiếp trong đường tròn \((O)\) có \(AB\) là đường kính nên \(∆ABC\) vuông tại \(C\)
\( \Rightarrow CO = OA = \displaystyle{1 \over 2}AB\) (tính chất tam giác vuông)
Mà \(AC = AO\) (bán kính đường tròn \((A)\))
Suy ra: \(AC = AO = OC\)
\( \Rightarrow \)\( ∆ACO\) đều \( \Rightarrow \widehat {AOC} = {60^o}\)
Ta có: \(∆ADB\) nội tiếp trong đường tròn đường kính \(AB\) nên \(∆ADB\) vuông tại \(D\)
\( \Rightarrow DO = OB = OA = \displaystyle {1 \over 2}AB\) (tính chất tam giác vuông)
\(BD = BO\) (bán kính đường tròn \((B)\))
Suy ra: \(BO = OD = BD\)
\( \Rightarrow \) \(∆BOD\) đều
\( \Rightarrow \widehat {ODB} = \widehat {BOD} = {60^o}\)
Mà \(\widehat {AOC} + \widehat {COD} + \widehat {BOD} = {180^o}\)
Suy ra: \(\widehat {COD} = {60^o}\)
Kết hợp với: \(OC = OD\) (vì cùng bằng \(\displaystyle {1 \over 2}AB\))
Suy ra: \(∆COD\) đều
\( \Rightarrow \widehat {ODC} = {60^o} \Rightarrow \widehat {ODC} = \widehat {BOD}\)
\( \Rightarrow \) \(CD // AB\) (vì có cặp góc ở vị trí so le trong bằng nhau)
\(c)\) Ta có: \(∆AOC\) đều (chứng minh trên) \( \Rightarrow OA = AC = OC\)
\(∆OCD\) đều (chứng minh trên) \( \Rightarrow OC = OD = CD\)
Suy ra: \(AC = AO = OD = DC\)
Vậy: tứ giác \(AODC\) là hình thoi. Suy ra \( AD \bot OC.\)
\(d)\) \(∆BOD\) đều (chứng minh trên) \( \Rightarrow \widehat {OBD} = {60^o}\) hay \(\widehat {ABD} = {60^o}\)
Vì \(∆ADB\) vuông tại \(D\)
\( \Rightarrow \widehat {DAB} + \widehat {ABD} = {90^o}\)
\( \Rightarrow \widehat {DAB} = {90^o} - \widehat {ABD} \)\(= {90^o} - {60^o} = {30^o}\)
Vậy \(\widehat {DAO} = {30^o}\)
\(e)\) \(OE // AD\;\; (gt)\)
\( \Rightarrow \widehat {EOB} = \widehat {DAO} = {30^o}\) (hai góc đồng vị)
\( sđ \overparen{BE}\) \( = \widehat {EOB} = {30^0}\)
\( sđ \overparen{CD}\) \( = \widehat {COD}\)
mà \(\widehat {COD} = {60^o}\) (chứng minh trên)
\( sđ \overparen{CD} = 60^o\)
Suy ra: Số đo cung \(\overparen{CD}\) gấp đôi số đo cung \(\overparen{BE}\).
-- Mod Toán 9 HỌC247
-
Bài 15 (Sách bài tập - tập 2 - trang 102)
Cho đường tròn tâm O bán kính 1,5 cm. Hãy vẽ hình vuông ABCD có 4 đỉnh nằm trên đường tròn đó. Nêu cách vẽ ?
Theo dõi (0) 1 Trả lời -
Chứng minh CD < = 1/2AE biết điểm M là điểm chính giữa của 1 nửa đường tròn
bởi Nguyễn Quỳnh Anh 02/12/2017
Giúp em với ạ
Theo dõi (0) 2 Trả lời