OPTADS360
ATNETWORK
NONE
YOMEDIA
Banner-Video
IN_IMAGE

Bài tập 19 trang 68 SGK Toán 8 Tập 2

Giải bài 19 tr 68 sách GK Toán 8 Tập 2

Cho hình thang \(ABCD\) (\(AB // CD\)).

Đường thẳng \(a\) song song với \(DC\), cắt các cạnh \(AD\) và \(BC\) theo thứ tự là \(E\) và \(F.\)

Chứng minh rằng:

a) \(\dfrac{AE}{ED} = \dfrac{BF}{FC}\);

b) \(\dfrac{AE}{AD} = \dfrac{BF}{BC}\)

c) \(\dfrac{DE}{DA} = \dfrac{CF}{CB}\).

ADSENSE/lession_isads=0
QUẢNG CÁO
 

Hướng dẫn giải chi tiết

a) Nối \(AC\) cắt \(EF\) tại \(O\)

\(∆ADC\) có \(EO // DC\) (giả thiết) \( \Rightarrow \dfrac{AE}{ED} = \dfrac{AO}{OC}\) (1) (theo định lí Talet)

\(∆ABC\) có \(OF // AB\) (giả thiết) \( \Rightarrow \dfrac{AO}{OC} = \dfrac{BF}{FC}\) (2) (theo định lí Talet)

Từ (1) và (2) \(\Rightarrow \dfrac{AE}{ED} = \dfrac{BF}{FC}\)

b) Theo câu a) ta có:

\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \Rightarrow {{FC} \over {BF}} = {{ED} \over {AE}} \cr
& \Rightarrow {{FC} \over {BF}} + 1 = {{ED} \over {AE}} + 1 \cr
& \Rightarrow {{FC + BF} \over {BF}} = {{ED + AE} \over {AE}} \cr
& \Rightarrow {{BC} \over {BF}} = {{AD} \over {AE}} \cr
& \Rightarrow {{AE} \over {AD}} = {{BF} \over {BC}} \cr} \)

c) Theo câu b) ta có:

\(\eqalign{
& {{AE} \over {ED}} = {{BF} \over {FC}} \cr
& \Rightarrow {{AE} \over {ED}} + 1 = {{BF} \over {FC}} + 1 \cr
& \Rightarrow {{AE + ED} \over {ED}} = {{BF + FC} \over {FC}} \cr
& \Rightarrow {{AD} \over {ED}} = {{BC} \over {FC}} \cr
& \Rightarrow {{FC} \over {BC}} = {{ED} \over {AD}}\,\,\,hay\,\,{{DE} \over {DA}} = {{CF} \over {CB}} \cr} \)

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 19 trang 68 SGK Toán 8 Tập 2 HAY thì click chia sẻ 
 
 

Bài tập SGK khác

NONE
OFF