Giải bài 7.8 trang 41 SGK Toán 10 Kết nối tri thức tập 2
Tính góc giữa các cặp đường thẳng sau:
a) \(\Delta _{1}:\sqrt{3}x+y-4=0\) và \(\Delta _{2}: x+\sqrt{3}y+3=0\)
b) \(d_{1}:\left\{\begin{matrix}x=-1+2t\\ y=3+4t\end{matrix}\right.\) và \(d_{2}:\left\{\begin{matrix}x=3+s\\ y=1-3s\end{matrix}\right.\) (t, s là các tham số)
Hướng dẫn giải chi tiết
Phương pháp giải
Cho hai đường thẳng
\({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) và \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\).
Với các vectơ pháp tuyến \(\overrightarrow {{n_1}} \left( {{a_1};{b_1}} \right)\) và \(\overrightarrow {{n_2}} \left( {{a_2};{b_2}} \right)\) trong ứng. Khi đó, góc \(\varphi \) giữa hai đường thằng đó được xác định thông qua công thức
\(cos\varphi = \left| {cos\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\left| {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2}} \right|}}{{\sqrt {{a_1}^2 + {b_1}^2} .\sqrt {{a_2}^2 + {b_2}^2} }}\)
Lời giải chi tiết
a)
\(\Delta _{1}\) có vecto pháp tuyến \(\overrightarrow{n_{1}}(\sqrt{3}; 1)\)
\(\Delta _{2}\) có vecto pháp tuyến \(\overrightarrow{n_{2}}(1; \sqrt{3})\)
Gọi \(\varphi \) là góc giữa hai đường thẳng \(\Delta _{1}\) và \(\Delta _{2}\), ta có:
\(cos\varphi =\left | cos(\overrightarrow{n_{1}},\overrightarrow{n_{2}})\right |=\frac{|\sqrt{3}.1+1.\sqrt{3}|}{\sqrt{1^{2}+3}.\sqrt{3+1^{2}}}=\frac{\sqrt{3}}{2}\)
Do đó góc giữa \(\Delta _{1}\) và \(\Delta _{2}\) là \(\varphi =30^{o}\).
b)
\(d _{1}\) có vecto chỉ phương \(\overrightarrow{u_{1}}(2; 4)\)
\(d _{2}\) có vecto chỉ phương \(\overrightarrow{u_{2}}(1; -3)\)
Gọi \(\varphi \) là góc giữa hai đường thẳng \(d _{1}\) và \(d _{2}\), ta có:
\(cos\varphi =\left | cos(\overrightarrow{u_{1}},\overrightarrow{u_{2}})\right |=\frac{|2.1-3.4|}{\sqrt{2^{2}+1^{2}}.\sqrt{4^{2}+3^{2}}}=\frac{2\sqrt{5}}{5}\)
Do đó góc giữa \(\Delta _{1}\) và \(\Delta _{2}\) là \(\varphi \approx 26,6^{o}\).
-- Mod Toán 10 HỌC247
Bài tập SGK khác
Vận dụng trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.7 trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.9 trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.10 trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.11 trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.12 trang 41 SGK Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.10 trang 37 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.11 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.12 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.13 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.14 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.15 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.16 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.17 trang 38 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Giải bài 7.18 trang 39 SBT Toán 10 Kết nối tri thức tập 2 - KNTT
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.